- 初中数学教学设计 推荐度:
- 相关推荐
初中数学教学设计
作为一名为他人授业解惑的教育工作者,很有必要精心设计一份教学设计,教学设计以计划和布局安排的形式,对怎样才能达到教学目标进行创造性的决策,以解决怎样教的问题。我们该怎么去写教学设计呢?以下是小编收集整理的初中数学教学设计,欢迎大家借鉴与参考,希望对大家有所帮助。
初中数学教学设计1
新学期已到来,我们又要投入到紧张、繁忙而有序地教育教学工作中,使自己今后的教学工作中能有效地、有序地贯彻新的教育精神,围绕我校新学期的工作计划要求制定初中一年级数学教学设计方案:
一、教材分析:
本学期是本年级学生初中学习阶段的第二学期、新授课程主要有相交线与平行线、平面直角坐标系、三角形、二元一次方程组、不等式与不等式组、数据的收集、现行教材、教学大纲要求学生从身边的实际问题出发,乘坐观察、思考、探究、讨论、归纳之舟,去探索、发现数学的奥妙,用学到的本领去解决复习巩固、综合运用、拓展探索等不同层次的问题、教师在灵活选用现有教材的基础上,应适度引用新例,把初中数学各单元的知识明晰化、条理化、规律化,激励学生自主、合作、探究学习,培养学习兴趣和习惯品质、
二、教学目标:
本学期的数学教学要从学生的实际问题出发,积极引导学生观察、思考、探究、讨论、归纳数学问题,要鼓励学生去探索、发现数学的奥妙,用学到的本领去解决复习巩固、综合运用、拓展探索等不同层次的问题、教学中既要注意知识的覆盖面,关注中考的重点、热点和难点,又要突出数学知识在社会、科技中的运用,让学生在学习、练习中熟记知识要点、考试内容,掌握应试技巧和数学思想方法,提高综合素质,培养创新意识和探索能力、在期末考试中力争生均分87分左右,及格率75%以上,并将低分率控制到10%以下,综合成绩县前五、
三、教学措施:
1、认真钻研教材,积极捕捉课改信息,尽力倡导自主、合作、探究学习,努力培养学生的学习兴趣和个性品质、
2、把握学生思想动态,及时与学生沟通,搞好师生关系、
3、充分利用课堂教学时间,帮助学生理解教学重难点,训练考点、热点,强化记忆,形成能力,提高成绩、
4、改进教学方法,用挂图,实物创设情景进行教学,力求课堂的多样化、生活化和开放化,力争有更多的师生互动、生生互动的机会、
5、精讲多练,在教学新知识的'同时,注重旧知识的复习,使所学知识系统化,条理化,让学生在练习、测试中巩固提高,减少遗忘、
6、开辟第二课堂,在不加重学生负担的前提下,积极引导学生阅读课外书,促进学生自主、合作,探究学习,培养兴趣,提高能力、
7、加强培优补中促差生的个别辅导,因材施教,培养学生的个性特长、特别要多鼓励后进生,提高他们的学习兴趣,培养他们良好的学习习惯:
(1)课前预习习惯;
(2)积极思考,主动发言习惯;
(3)自主作业习惯;
(4)课后复习习惯。
初中数学教学设计2
一、案例实施背景
本节课是20xx-20xx学年度第一学期笔者在一乡镇中学的多媒体教室里上的一节课,课堂中数学优秀生、中等生及后进生都有,所用教材为人教版义务教育课程九年级数学(上册).
二、案例主题分析与设计
本节课是人教版义务教育教科书九年级上册第24章第1节内容——圆,圆的概念是中心对称的继续,是后面研究扇形、弧长的基础,是“空间与图形”的重要组成部分。《数学课程标准》强调:数学教学是数学活动的教学,是师生之间、生生之间交往互动与共同发展的过程;动手实践,自主探索,合作交流是孩子学习数学的重要方式;合作交流的学习形式是培养孩子积极参与、自主学习的有效途径。本节课将以“生活·数学”、“活动·思考”、“表达·应用”为主线开展课堂教学,以学生看得到、感受得到的基本素材创设问题情境,引导学生活动,并在活动中激发学生认真思考、积极探索,主动获取数学知识,从而促进学生研究性学习方式的形成,同时通过小组内学生相互协作研究,培养学生合作性学习精神。
三、案例教学目标
1、知识技能:探索圆的两种定义,理解并掌握弧、弦、优弧、劣弧、半圆等基本概念,能够从图形中识别.
2、数学思考:体会圆的不同定义方法,感受圆和实际生活的联系
3、解决问题:在解决问题过程中使学生体会数学知识在生活中的普遍性.
四、案例教学重、难点
1、重点:圆的两种定义的探索,能够解释一些生活问题.
2、难点:圆的运动式定义方法.
五、案例教学用具
1、教具:多媒体课件、圆规、细线、铅笔。
2、学具:圆规
六、案例教学过程
(一)创设问题情境,激发学生兴趣,引出本节内容
1、如图1,观察下列图形,从中找出共同特点.
图1
2、学生活动:学生观察图形,发现图中都有圆,然后回答问题,此时学生可以再举出一些生活中类似的图形.
3、教师活动:让学生观察图形,感受圆和实际生活的密切联系,同时激发学生的学习渴望以及探究热情.
(二)问题引申,探究圆的定义,培养学生的探究精神
1、如图2,观察下列画圆的过程,你能由此说出圆的形成过程吗?(课件展示画图过程)
图2
2、学生活动:学生小组合作、分组讨论,通过动画演示,发现在一个平面内一条线段OA绕它的一个端点O旋转一周,另一个端点形成的图形就是圆.
3、教师活动设计:在学生归纳的基础上,引导学生对圆的一些基本概念作一界定:圆:在一个平面内,一条线段OA绕它的一个端点O旋转一周,另一个端点A所形成的图形叫作圆;圆心:固定的端点叫作圆心;半径:线段OA的长度叫作这个圆的半径;圆的表示方法:以点O为圆心的圆,记作“⊙O”,读作“圆O”.
4、师生共同归纳:
(1)圆上各点到定点(圆心)的距离都等于定长(半径);
(2)到定点的距离等于定长的点都在同一个圆上.
(3)圆的第二定义:所有到定点的距离等于定长的点组成的图形叫作圆.
5、讨论圆中相关元素的定义.
(1)如图3,你能说出弦、直径、弧、半圆的定义吗?
图3 (2)学生活动:学生小组讨论,讨论结束后派一名代表发言进行交流,在交流中逐步完善自己的结果.
(3)教师活动:在学生交流的基础上得出上述概念的严格定义,对于学生的不准确的叙述,可以让学生讨论解决. 弦:连接圆上任意两点的线段叫作弦; 直径:经过圆心的弦叫作直径;
弧:圆上任意两点间的部分叫作圆弧,简称弧;
AB,读作“圆弧AB”或“弧弧的表示方法:以A、B为端点的弧记作AB”;
半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫作半圆.
优弧:大于半圆的弧叫作优弧,用三个字母表示,如图3中的 ABC;
. 劣弧:小于半圆的弧叫作劣弧,如图3中的BC
(三)讨论,车轮为什么做成圆形?如果做成正方形会有什么结果?(课件:车轮;课件:方形车轮)
1、学生活动:学生首先根据对圆的概念的理解独立思考,然后进行分组讨论,最后进行交流.
2、教师活动设计:引导学生进行如下分析:如图4,把车轮做成圆形,车轮上各点到车轮中心(圆心)的距离都等于车轮的半径,当车轮在平面上滚动时,车轮中心与平面的距离保持不变,因此当车辆在平坦的路上行驶时,坐车的人会感觉到非常平稳;如果做成其他图形,比如正方形,正方形的中心(对角线的交点)距离地面的距离随着正方形的滚动而改变,因此中心到地面的距离就不是保持不变,因此不稳定.
图4
(四)应用提高,培养学生的应用意识和创新能力m的圆?说出你的理由
2、师生活动设计:教师鼓励学生独立思考,让学生表述自己的方法.根据圆的定义可以知道,圆是一条线段绕一个端点旋转一周,另一个端点形成的`图形,所以可以用一条长5m的绳子,将绳子的一端A固定,然后拉紧绳子的另一端B,并绕A在地上转一圈.B所经过的路径就是所要的圆.cm,这棵红杉树平均每年半径增加多少?
图5
4、师生活动设计:首先求出半径,然后除以20即可.
解答:树干的半径是23÷2=11.5(cm).
平均每年半径增加11.5÷20=0.575(cm).
(五)归纳小结、布置作业
小结:圆的两种定义以及相关概念.
作业:请做一个正方形的车轮,体会在车轮滚动的过程中车身的情况
七、教学反思
1、教师角色的转变:本节课教师的角色从知识的传授者转变为学生学习的组织者、引导者、合作者与共同探讨者。在引导学生观察、画图、发现结论后,利用多媒体课件直观的、动态的展示圆的形成过程及车轮原理,激发了兴趣。
2、学生角色的转变:学生的角色从学会转变为会学。本节课学生不是停留在学会课本知识的层面上,而是站在研究者的角度深入其境。
3、课堂氛围的转变:整节课以 “流畅、开放、合作、“隐导”为基本特征。教师对学生的思维活动减少干预,教学过程呈现一种比较流畅的特征,整节课学生与学生、学生与教师之间以“对话”、“讨论”为出发点,以互助、合作为手段,以解决问题为目的,让学生在一个较为宽松的环境中自主选择获得成功的方向,判断发现的价值。
初中数学教学设计3
一、内容和内容解析
(一)内容
概念:不等式、不等式的解、不等式的解集、解不等式以及能在数轴上表示简单不等式的解集.
(二)内容解析
现实生活中存在大量的相等关系,也存在大量的不等关系.本节课从生活实际出发导入常见行程问题的不等关系,使学生充分认识到学习不等式的重要性和必然性,激发他们的求知欲望.再通过对实例的进一步深入分析与探索,引出不等式、不等式的解、不等式的解集以及解不等式几个概念.前面学过方程、方程的解、解方程的概念.通过类比教学、不等式、不等式的解、解不等式几个概念不难理解.但是对于初学者而言,不等式的解集的理解就有一定的难度.因此教材又进行数形结合,用数轴来表示不等式的解集,这样直观形象的表示不等式的解集,对理解不等式的解集有很大的帮助.基于以上分析,可以确定本节课的教学重点是:正确理解不等式、不等式的解与解集的意义,把不等式的解集正确地表示在数轴上.
二、目标和目标解析
(一)教学目标
1.理解不等式的概念
2.理解不等式的解与解集的意义,理解它们的区别与联系3.了解解不等式的概念
4.用数轴来表示简单不等式的解集
(二)目标解析
1.达成目标1的标志是:能正确区别不等式、等式以及代数式.
2.达成目标2的标志是:能理解不等式的解是解集中的某一个元素,而解集是所有解组成的一个集合.
3.达成目标3的标志是:理解解不等式是求不等式解集的一个过程.
4、达成目标4的标志是:用数轴表示不等式的解集是数形结合的又一个重要体现,也是学习不等式的一种重要工具.操作时,要掌握好“两定”:一是定界点,一般在数轴上只标出原点和界点即可,边界点含于解集中用实心圆点,或者用空心圆点;二是定方向,小于向左,大于向右.
三、教学问题诊断分析
本节课实质是一节概念课,对于不等式、不等式的解以及解不等式可通过类比方程、方程的解、解方程类比教学,学生不难理解,但是对不等式的解集的理解就有一定的难度.
因此,本节课的教学难点是:理解不等式解集的意义以及在数轴上正确表示不等式的解集.
四、教学支持条件分析
利用多媒体直观演示课前引入问题,激发学生的`学习兴趣.
五、教学过程设计
(一)动画演示情景激趣多媒体演示:两个体重相同的孩子正在跷跷板上做游戏,现在换了一个大人上去,跷跷板发生了倾斜,游戏无法继续进行下去了,这是什么原因呢?设计意图:通过实例创设情境,从“等”过渡到“不等”,培养学生的观察能力,分析能力,激发他们的学习兴趣.
(二)立足实际引出新知
问题一辆匀速行驶的汽车在11︰20距离a地50km,要在12︰00之前驶过a地,车速应满足什么条件?
小组讨论,合作交流,然后小组反馈交流结果.最后,老师将小组反馈意见进行整理(学生没有讨论出来的思路老师进行补充)
1.从时间方面虑:2.从行程方面:<>50 3.从速度方面考虑:x>50÷
设计意图:培养学生合作、交流的意识习惯,使他们积极参与问题的讨论,并敢于发表自己的见解.老师对问题解决方法的梳理与补充,发散学生思维,培养学生分析问题、解决问题的能力.
(三)紧扣问题概念辨析
1.不等式
设问1:什么是不等式?
设问2:能否举例说明?由学生自学,老师可作适当补充.比如:是不等式.
2.不等式的解
设问1:什么是不等式的解?设问2:不等式的解是唯一的吗?由学生自学再讨论.
老师点拨:由x>50÷得x>75说明x任意取一个大于75的数都是不等式
3.不等式的解集
设问1:什么是不等式的解集?<,>50的解.<,>50,x>50÷都设问2:不等式的解集与不等式的解有什么区别与联系?由学生自学后再小组合作交流.
老师点拨:不等式的解是不等式解集中的一个元素,而不等式的解集是不等式所有解组成的一个集合.
4.解不等式
设问1:什么是解不等式?由学生回答.
老师强调:解不等式是一个过程.
设计意图:培养学生的自学能力,进一步培养学生合作交流的意识.遵循学生的认知规律,有意识、有计划、有条理地设计一些问题,可以让学生始终处于积极的思维状态,不知不觉中接受了新知识.老师再适当点拨,加深理解.
(四)数形结合,深化认识
问题1:由上可知,x>75既是不等式的解集.那么在数轴上如何表示x>75呢?问题2:如果在数轴上表示x≤ 75,又如何表示呢?由老师讲解,注意规范性,准确性.老师适当补充:“≥”与“≤”的意义,并强调用“≥”或“≤”连接的式子也是不等式.比如x≤ 75就是不等式.
设计意图:通过数轴的直观让学生对不等式的解集进一步加深理解,渗透数形结合思想.
(五)归纳小结,反思提高教师与学生一起回顾本节课所学主要内容,并请学生回答如下问题
1、什么是不等式?<的解集,也是不等式>50
2、什么是不等式的解?
3、什么是不等式的解集,它与不等式的解有什么区别与联系?
4、用数轴表示不等式的解集要注意哪些方面?
设计意图:归纳本节课的主要内容,交流心得,不断积累学习经验.
(六)布置作业,课外反馈
教科书第119页第1题,第120页第2,3题.
设计意图:通过课后作业,教师及时了解学生对本节课知识的掌握情况,以便对教学进度和方法进行适当的调整.
六、目标检测设计
1.填空
下列式子中属于不等式的有___________________________
①x +7>
②x≥ y + 2 = 0
③ 5x + 7
设计意图:让学生正确区分不等式、等式与代数式,进一步巩固不等式的概念.
2.用不等式表示
① a与5的和小于7
② a的与b的3倍的和是非负数
③正方形的边长为xcm,它的周长不超过160cm,求x满足的条件设计意图:培养学生审题能力,既要正确抓住题目中的关键词,如“大于(小于)、非负数(正数或负数)、不超过(不低于)”等等,正确选择不等号,又要注意实际问题中的数量的实际意义.
初中数学教学设计4
(一)创设情境导入新课
不利用工具,请你将一张用纸片做的角分成两个相等的角。你有什么办法?
如果前面活动中的纸片换成木板、钢板等没法折的角,又该怎么办呢?
设计目的:能聚拢学生的思维为新课的开展创造了良好的教学氛围。
(二)合作交流探究新知
(活动一)探究角平分仪的原理。具体过程如下:
播放美访问我国的录像资料------引出雨伞-----观察它的截面图,使学生认清其中的边角关系-----引出角平分线;并且运用几何画板对伞的开合进行动态演示,让学生直观感受伞面形成的角与主杆的关系-----让学生设计制作角平分仪;并利用以前所学的知识寻找理论上的依据,说明这个仪器的制作原理。
设计目的:用生活中的实例感知。以最近大事作引入点,以最常见的事物为载体,让学生感受到生活中处处都有数学,认识到数学的价值。其中设计制作角平分仪,可培养学生的创造力和成就感以及学习数学的兴趣。使学生很轻松的完成活动二。
(活动二)通过上述探究,能否总结出尺规作已知角的平分线的一般方法.自己动手做做看.然后与同伴交流操作心得.
分小组完成这项活动,教师可参与到学生活动中,及时发现问题,给予启发和指导,使讲评更具有针对性。
讨论结果展示:教师根据学生的叙述,利用多媒体课件演示作已知角的平分线的方法:
已知:∠AO B.
求作:∠AOB的平分线.
作法:
(1)以O为圆心,适当长为半径作弧,分别交OA、OB于M、N.
(2)分别以M、N为圆心,大于1/2MN的长为半径作弧.两弧在∠AOB内部交于点C.
(3)作射线OC,射线OC即为所求.
设计目的:使学生能更直观地理解画法,提高学习数学的兴趣。
议一议:
1.在上面作法的第二步中,去掉“大于MN的长”这个条件行吗?
2.第二步中所作的两弧交点一定在∠AOB的内部吗?
设计这两个问题的目的在于加深对角的`平分线的作法的理解,培养数学严密性的良好学习习惯。
学生讨论结果总结:
1.去掉“大于MN的长”这个条件,所作的两弧可能没有交点,所以就找不到角的平分线.
2.若分别以M、N为圆心,大于MN的长为半径画两弧,两弧的交点可能在∠AOB的内部,也可能在∠AOB的外部,而我们要找的是∠AOB内部的交点,否则两弧交点与顶点连线得到的射线就不是∠AOB的平分线了.
3.角的平分线是一条射线.它不是线段,也不是直线,所以第二步中的两个限制缺一不可.
4.这种作法的可行性可以通过全等三角形来证明.
(活动三)探究角平分线的性质
思考:已知一角及其角平分线添加辅助线构成全等三角形;构成全等的直角三角形。这样的三角形有多少对?
这样设计的目的是加深对全等的认识。
初中数学教学设计5
课题:12.3等腰三角形(第一课时)
教学内容:新人教版八年级上册十二章第三节等腰三角形的第一课时
任课教师:东湾中学李晓伟
设计理念:
教学的实质是以教材中提供的素材或实际生活中的一些问题为载体,通过一系列探究互动过程,渗透分类讨论、数形结合和方程的思想方法,达到学生知识的构建、能力的培养、情感的陶冶、意识的创新。
㈠教材的地位和作用分析
等腰三角形是新人教版八年级上册十二章第三节等腰三角形的第一课时的内容。本节课是在前面学习了三角形的有关概念及性质、轴对称变换、全等三角形、垂直平分线和尺规作图的基础上,研究等腰三角形的定义及其重要性质,它既是前面所学知识的延伸,也是后面直角三角形、等边三角形的知识的重要储备,我们常常利用它证明角相等、线段相等、两直线垂直,因此本节课具有承上启下的重要作用。
另外,本堂课通过“活动探究”、“观察—猜想—证明”等途径,进一步培养学生的动手能力、观察能力、分析能力和逻辑推理能力,因此,本堂课无论在知识上,还是在对学生能力的培养及情感教育等方面都有着十分重要的作用。
㈡教学内容的分析
本堂课是等腰三角形的第一堂课,在认识等腰三角形的基础上着重介绍“等腰三角形的性质”。在教学设计的过程中,通过展示我国今年举办的精彩绝伦的盛会—上海世博会图片中的等腰三角形,结合云南丰富的文化资源,让学生感知生活中处处有数学,感受图形的和谐美、对称美;通过学生感兴趣的数学情景引入等腰三角形定义,提高学生的学习乐趣;让学生通过动手剪等腰三角形、对折等腰三角形等活动,探究发现等腰三角形的性质,经历知识的“再发现”过程。在探究活动的过程中发展创新思维能力,改变学生的学习方式。在发现等腰三角形的性质的基础上,再经过推理证明等腰三角形的性质,使得推理证明成为学生观察、实验、探究得出结论的自然延伸,有机地将等腰三角形的`认识与等腰三角形的性质的证明结合起来,从中发展学生推理能力。
在例题的选取上,注重联系实际,激发学生学习兴趣,让学生主动用数学知识解决实际问题,同时渗透分类讨论、数形结合和方程的数学思想方法,让学生形成自我的数学思维和能力,发展学生应用数学的意识。
二、目标及其解析
㈠教学目标:
知识技能:
1.了解等腰三角形的概念,认识等腰三角形是轴对称图形;2.经历探究等腰三角形性质的过程,理解等腰三角形的性质的证明;
3.掌握等腰三角形的性质,能运用等腰三角形的性质解决生活中简单的实际问题。
数学思考:
1.经历“观察?实验?猜想?论证”的过程,发展学生几何直观;
2.经历证明等腰三角形的性质的过程,体会证明的必要性,发展合情推理能力和初步的演绎推理能力.
解决问题:
1.能运用等腰三角形的性质解决生活中的实际问题,发展数学的应用能力,获得解决问题的经验;
2.在小组活动和探究过程中,学会与人合作,体会与他人合作的重要性.
情感态度:
1.经历“观察?实验?猜想?论证”的过程,体验数学活动充满着探究性和创造性,感受证明的必要性、证明过程的严谨性以及结论的确定性,并有克服困难和运用知识解决问题的成功体验,建立学好数学的自信心;
2.经历运用等腰三角形解决实际问题的过程,认识数学是解决实际问题和进行交流的重要工具,了解数学对促进社会进步和发展人类理性精神的作用;
3.在独立思考的基础上,通过小组合作,积极参与对数学问题的讨论,敢于发表自己的观点,并尊重与理解他人的见解,在交流中获益.
㈡教学重点:
等腰三角形的性质及应用。
㈢教学难点:
等腰三角形性质的证明。
㈣解析
本堂课是等腰三角形的第一堂课,所以对于本堂课的知识目标的定位,主要考虑如下:1.了解等腰三角形的概念,认识等腰三角形是轴对称图形,在本堂课中要达到如下要求:⑴理解等腰三角形的定义,知道等腰三角形的顶角、底角、腰和底边;⑵知道等腰三角形是轴对称图形,它有一条对称轴,即:顶角角平分线(底边上的高或底边上的中线)所在直线;
2.经历探究等腰三角形性质的过程,掌握等腰三角形的性质的证明,在课堂中让学生参与等腰三角形性质的探索,鼓励学生用规范的数学言语表述证明过程,发展学生的数学语言能力和演绎推理能力,引导学生完成对等腰三角形的性质的证明;
3.会利用等腰三角形的性质解决简单的实际问题,本堂课要达到以下要求:掌握等腰三角形的性质,会利用等腰三角形的性质解决简单的实际问题。
三、问题诊断分析
1.在这堂课中,学生可能遇到的第一个困难是等腰三角形性质的发现,特别是等腰三角形顶角的角平分线、底边上的中线、底边上的高相互重合这一性质,解决这一问题教师主要借助等腰三角形对称性的研究,并引导学生理解“重合”这个词的涵义。
2.这堂课学生可能遇到的第二个问题是证明等腰三角形的性质,这一问题主要有三个原因:第一学生刚接触几何证明不久,对数学语言表达方式还不熟悉;这一困难,并不是一堂课就能解决的,而要在以后学习中帮助学生增强数学语言运用的能力,能有条理地、清晰地阐述自己的观点。在这堂课中我通过等腰三角形性质的证明,鼓励学生运用规范的数学语言来表述,使学生数学语言能力和演绎推理能力得到提升;第二是添加辅助线的问题,这也是学生在证明中的一个难点。要解决这一问题,我借助等腰三角形是轴对称图形,通过研究等腰三角形的对称轴,让学生理解三种添加辅助线的方法,即作顶角角平分线、底边上的高或底边上的中线;第三是证明等腰三角形顶角角平分线、底边上的中线、底边上的高互相重合这一性质,要突破这一难点,我采用先证明等腰三角形两底角相等这一性质,为学生搭一个台阶,更好地解决这个难点。
3.这堂课中学生可能遇到的第三个问题是对等腰三角形的性质的应用,特别是等腰三角形顶角的角平分线、底边上的中线、底边上的高相互重合这一性质的应用;所以我在设计
课堂练习时,注重数学知识与生活实际的联系,提高学生数学学习的兴趣,让学生主动运用数学知识解决实际问题,并通过练习渗透分类讨论、数形结合和方程的数学思想方法,让学生形成自我的数学思维和能力,发展学生应用数学的意识。
四、教法、学法:
教法:
常言道:“教必有法,教无定法”。所以我针对八年级学生的心理特点和认知能力水平,大胆应用生活中的素材,并作了精心的安排,充分体现数学是源于实践又运用于生活。因此,本堂课的教学中,我以学生为主体,让学生积极思维,勇于探索,主动地获取知识。同时,采用了现代化教学技术,激发学生的学习兴趣,使整个课堂“活”起来,提高课堂效率。本堂课以生活中的一些例子为中心,让学生亲自尝试,接受问题的挑战,充分展示自己的观点和见解,给学生创设一个宽松愉快的学习氛围,让学生体验成功的快乐,为终身学习和发展打打下坚实的基础。
本堂课的设计是以课程标准和教材为依据,采用发现式教学。遵循因材施教的原则,坚持以学生为主体,充分发挥学生的主观能动性。教学过程中,注重学生探究能力的培养。还课堂给学生,让学生去亲身体验知识的产生过程,拓展学生的创造性思维。同时,注意加强对学生的启发和引导,鼓励培养学生大胆猜想,小心求证的科学研究的思想。
学法:
学生都渴望与他人交流,合作探究可使学生感受到合作的重要和团队的精神力量,增强集体意识,所以本课采用小组合作的学习方式,让学生遵循“情景问题?实践探究?证明结论?解决实际问题”的主线进行学习。让学生从活动中去观察、探索、归纳知识,沿着知识发生,发展的脉络,学生经过自己亲身的实践活动,形成自己的经验,产生对结论的感知,实现对知识意义的主动构建。这不仅让学生对所学内容留下了深刻的印象,而且能力得到培养,素质得以提高,充分地调动学生学习的热情,让学生学会自主学习,学会探索问题的方法。
五、教学支持条件分析
在本堂课中,准备利用长方形纸片、剪刀、圆规和直尺等工具,剪出等腰三角形,利用等腰三角形,通过对折、多媒体动画演示等方法发现等腰三角形的性质,并且借助多媒体信息技术与实际动手操作加强对所学知识的理解和运用。
六、教学基本流程
七、教学过程设计
初中数学教学设计6
一、教学设计:
1 学习方式:
对于全等三角形的研究,实际是平面几何中对封闭的两个图形关系研究的第一步。它是两个三角形间最简单,最常见的关系。它不仅是学习后面知识的基础,并且是证明线段相等、角相等以及两线互相垂直、平行的重要依据。因此必须熟练地掌握全等三角形的判定方法,并且灵活的应用。为了使学生更好地掌握这一部分内容,遵循启发式教学原则,用设问形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,使学生经历从现实世界抽象出几何模型和运用所学内容,解决实际问题的过程,真正把学生放到主体位置。
2 学习任务分析:
充分利用教科书提供的素材和活动,鼓励学生经历观察、操作、推理、想象等活动,发展学生的空间观念,体会分析问题、解决问题的方法,积累数学活动经验。培养学生有条理的思考,表达和交流的能力,并且在以直观操作的基础上,将直观与简单推理相结合,注意学生推理意识的'建立和对推理过程的理解,能运用自己的方式有条理的表达推理过程,为以后的证明打下基础。
3 学生的认知起点分析:
学生通过前面的学习已了解了图形的全等的概念及特征,掌握了全等图形的对应边、对应角的关系,这为探究三角形全等的条件做好了知识上的准备。另外,学生也具备了利用已知条件作三角形的基本作图能力,这使学生能主动参与本节课的操作、探究成为可能。
4 教学目标:
(1) 学生在教师引导下,积极主动地经历探索三角形全等的条件的过程,体会利用操作、归纳获得数学结论的过程。
(2) 掌握三角形全等的“边边边”、“边角边”、“角边角”、“角角边”的判定方法,了解三角形的稳定性,能用三角形的全等解决一些实际问题。
(3) 培养学生的空间观念,推理能力,发展有条理地表达能力,积累数学活动经验。
5 教学的重点与难点:
重点:三角形全等条件的探索过程是本节课的重点。从设置情景提出问题,到动手操作,交流,直至归纳得出结论,整个过程学生不仅得到了两个三角形全等的条件,更重要得是经历了知识的形成过程,体会了一种分析问题的方法,积累了数学活动经验,这将有利于学生更好的理解数学,应用数学。难点:三角形全等条件的探索过程,特别是创设出问题后,学生面对开放性问题,要做出全面、正确得分析,并对各种情况进行讨论,对初一学生有一定的难度。
根据初一学生年龄、生理及心理特征,还不具备独立系统地推理论证几何问题的能力,思维受到一定的局限,考虑问题不够全面,因此要充分发挥教师的主导作用,适时点拨、引导,尽可能调动所有学生的积极性、主动性参与到合作探讨中来,使学生在与他人的合作交流中获取新知,并使个性思维得以发展。
6 教学过程
教学步骤
教师活动
学生活动
教学媒体(资源)和教学方式
复习过渡
引入新知
创设情景
提出问题
建立模型
探索发现
归纳总结
得出新知巩固运用
及其推广
反思小结
提炼规律
电脑显示,带领学生复习全等三角定义及其性质。
电脑显示,小明画了一个三角形,怎样才能画一个三角形与他的三角形全等?我们知道全等三角形三条边
分别对应相等,三个角分别对应相等,那麽,反之这六个元素分别对应,这样的两个三角形一定全等.但是,是否一定需要六个条件呢?条件能否尽可能少吗?
对学生分类中出现的问题,予以纠正,对学生提出的解决问题的不同策略,要给予肯定和鼓励,以满足多样化的学生需要,发展学生个性思维。
初中数学教学设计7
初中数学教学设计的总体思路必须遵循数学课程标准,充分体现课程标准。教学最根本的出发点必须要放在学生的发展上――“为了学生的发展而教”。突出体现基础性、普及性和发展性,使数学教育面向全体学生,实现“人人学有价值的数学;人人都能获得必需的数学;不同的人在数学上得以不同的发展”。因此,如何把握新课程标准,成了我们教师必须首先关注的问题,尤其是如何发挥学生自主学习的能动性,对我们教师是一个全新的挑战。教师究竟如何进行课堂教学,才能很好地发挥新教材的作用,并且能够充分调动学生的学习积极性;发挥教师的指导作用,使学生学得轻松愉快,是摆在教师面前必须解决的问题。数学教学是数学思维活动的教学,没有问题就没有思维。问题是数学的心脏,数学知识、思想、方法、观念都是在解决数学问题的过程中形成和发展起来的。因此,数学教学设计的中心任务就是要设计出一个(或一组)问题,把数学教学过程组织成提出问题和解决问题的过程。经过长期的教学实践,我认为做好数学学科教学设计必须注意以下几点:
一、深挖教材,设计问题
首先,要想很好地在课堂上让学生学到更多的数学知识,而且爱学想学,就要我们教师在备课时,很好地挖掘教材,把问题设计得合情合理,而且要对学生有足够的吸引力,使学生愿意听、愿意想、愿意回答,这样才能吸引学生的注意力。其次,设计问题时要有针对性。力求体现教材中涉及的知识点,把教材中的知识点用形象、直观的问题设计出来。问题设计要通俗易懂、简单明了,让学生一看就知道应该如何思考。最后,问题设计要有承上启下的作用。也就是说,每上一节课后,都能使学生主动地预习下一节内容。这就要求我们在问题设计中,能够设计适当的问题,激发学生的学习积极性。从而很好地体现新课程标准的精神:学生是学习的主人,教师是学习的引导者。这就需要我们教师在实际教学中认真挖掘教材,很好地设计教学问题。
二、相信学生,师生互动
我们的教师都是在满堂灌的教学模式下成长起来的,现在自己站在了讲台上,认为不讲好像学生就学不会。所以,总是不放心学生,不相信学生,不敢放开手脚让学生自主地学。其实,学生有自己的理解思路,许多知识我们完全不需要翻来覆去地讲。比如说,我们初中学习的三视图,结合实际图形学生比我们要学得好的多。我们完全可以让学生自己去探索,自己去总结,自己得出结论。我们教师只需要在学生有疑难的时候,给学生以适当的引导和解释,学生完全可以学得很好。而在实际教学中,恰恰和这相反。我们的'教师是该讲的也讲,不该讲的也讲。把本该属于学生的时间都侵占了,使学生根本没有思考的时间。久而久之,学生自主学习的积极性也就给抹杀了,学生再也不会去自觉地思考和提出问题了。学生认为,反正老师什么都要讲的,我们还看它做什么。所以说,教师在进行新教材的教学时,应该特别注意这个问题。要做到该讲的要讲,不该讲的坚决不讲,相信学生,把属于学生的时间还给学生,发挥学生在学习中的主观能动性和独立自主性。
三、注重分析,把握重点
一个好的数学教师要有很高的分析问题的能力,会分析是一个数学教师必备的专业素质。在新课程教学中,我们除了很好地挖掘教材,简单、形象地设计问题外,还应该注重在教学过程中教会学生分析问题。也就是说,“授之以鱼,不如授之以渔。”教会学生做题,不如教会学生分析问题。教会学生做题,他只会这一题,而教会学生分析,一题胜百题。教会学生分析问题,就给了学生解题的钥匙。在分析问题的时候,要教会学生找准问题的切入点。也就是说,要找到解题的一个关键条件。从而借助我们已经学过的知识,全方位地整合题中的条件和结论,找到解题的突破口。为了达到以上目的,教师在选题上也要狠下功夫。首先,要多研究历年来的中考题,准确把握大纲和考纲,选择一些巧妙的试题供学生学习。由此总结分析问题的方法和技巧,不要一味地求难、求偏、求怪。那样不仅起不到作用,反而使学生对学习数学产生畏难情绪,停滞不前,甚至厌学。其次,要多挖掘课本的例题、习题。要结合我们的教学要求,对课本的例题、习题进行合理地演变,并注重一题多解的变形。这样学生不仅容易接受,而且能使学生对课本产生浓厚的兴趣,自然而然地去学习和探索。
四、精心设计,简明扼要
以上都是教师在新课程教学中应注意的问题,做好了这些,最后就是如何设计好数学学案。学案设计一般包括四部分。第一部分,就是要设计好学习目标。学习目标的设计要力求简单明了,让学生一看就知道这节课要学会什么。千万不要把学习目标的设计只走了形式,让学生看了都不知道要做什么,要学会什么。第二部分,就是要设计好问题。问题的设计要力求使学生易于理解,能够准确地找到问题的切入点。并能引发学生思考,使学生很快地能和本节课学习的知识联系起来。特别是对于概念定理的设计,最好能把数学概念定理题型化,让学生在思考中理解概念和定理,从而能学会很好地灵活应用。第三部分,学案的设计,要巧妙有趣味。在课堂教学中,要注重学生学习兴趣的培养和学习积极性的调动。好的学案设计能充分调动学生的积极性和学习兴趣,使学生想学、爱学。第四部分,学案的设计还要有承上启下的作用。这样,就能把教材的知识巧妙地联系在一起,激发学生主动地去预习下一节教学内容。从而使我们的学案教学更有整体性和连贯性。
五、完美小结 拓展创新
通过我们细心的设计,巧妙的选题和学生的认真思考,在课堂结束的时候,我们要很好的小结本节内容,让学生在本节的学习得到一个升华。也就是说,帮助学生在课后进行很好的小结,让学生明确地知道这节课学会了哪些知识,掌握了哪些分析问题的方法。这一环节一定要做好,绝不是简单的课堂内容的重复。
初中数学教学设计8
教学目标
1、知识与技能:
(1)理解一元一次不等式组及其解集的意义;
(2)掌握一元一次不等式组的解法。
2、过程与方法:
(1)经历通过具体问题抽象出不等式组的过程,培养学生逐步形成分析问题和解决问题的能力。
(2)经历一元一次不等式组解集的探究过程,培养学生的观察能力和数形结合的思想方法,渗透类比和化归思想。
3、情感、态度与价值观:
(1)感受数形结合思想在数学学习中的作用,养成自主探究的良好学习习惯。
(2)学生在解不等式组的过程中体会用数学解决问题的直观美和简洁美。
2学情分析
本节讨论的对象是一元一次不等式组。几个一元一次不等式合在一起,就得到一元一次不等式组。从组成成员上看,一元一次不等式组是在一元一次不等式基础上发展的新概念;从组成形式上看,一元一次不等式组与第八章学习的方程组有类似之处,都是同时满足几个数量关系,所求的都是集合不等式解集的公共部分或几个方程的公共解。因此,在本节教学中应注意前面的基础,让学生借助对已学知识的认识学习新知识。
另外,本节课是在学生学习了一元一次方程、二元一次方程组和一元一次不等式之后的又一次数学建模思想学习,是今后利用一元一次不等式组解决实际问题的关键,是后续学习一元二次方程、函数的重要基础,具有承前启后的重要作用。另外,在整个学习过程中数轴起着不可替代的作用,处处渗透着数形结合的思想,这种数形结合的思想对学生今后学习数学有着重要的影响。
3重点难点
1、教学重点:对一元一次不等式组解集的认识及其解法。
2、教学难点:对一元一次不等式组解集的认识及确定。
3、教学关键:利用数轴确定不等式组中各个不等式解集的公共部分。
4教学过程4.1第一学时教学活动活动1【导入】温故知新
教师提问:
1、什么是一元一次不等式?
2、什么是一元一次不等式的解集?
3、如何求一元一次不等式的解集?
针对性练习:
(设计意图:检验学生是否理解和掌握一元一次不等式的相关概念,为本节新课内容的学习做好铺垫。同时对解不等式中的相关要点加以强调:①解不等式中,系数化为1时不等号的方向是否要改变;②在数轴上表示解集时“实心圆点”和“空心圆圈”的选择;③要正确理解利用数轴表示出来的不等式解集的几何意义。)
活动2【讲授】创设问题情景,探索新知
1、问题(课本第127页):用每分钟可抽30 t水的抽水机来抽污水管道里积存的污水,估计积存的污水
超过1 200 t而不足1 500 t,那么将污水抽完所用时间的范围是什么?
(设计意图:结合生活实例,让学生经历通过具体问题抽象出不等式组的过程,即经历知识的拓展过程,让学生体会到数学学习的内容是现实的、有意义的、富有挑战性的。)
2、引导学生找出问题中“积存的污水”需同时满足的两个不等关系:
超过1 200 t和不足1 500 t。
3、问题1:如何用数学式子表示这两个不等关系?
1)引导学生一起把这个实际问题转换为数学模型:
满足一个不等关系我们可列一个不等式,满足两个不等关系可以列出两个不等式。
设用x min将污水抽完,则x需同时满足以下两个不等式:
30x>1200, ①
30x<1500 ②
2)教师归纳一元一次不等式组的意义:
由于未知数x需同时满足上述两个不等式,那么类似于方程组,我们把这样两个不等式合起来,就组成一个一元一次不等式组。
(设计意图:把实际问题转换为数学模型,同时让学生根据一元一次不等式和二元一次方程组的有关概念来类推一元一次不等式组的有关概念,渗透类比和化归思想。)
4、问题2:怎样确定不等式组中既满足不等式①同时又满足不等式②的x的可取值范围?
1)教师分析:对于一元一次不等式组来说,组成不等式组的每一个不等式中都只含有一个未知数,
运用前面解一元一次不等式的知识,我们就能直接求出不等式组中的每一个一元一次不等式的.解集。
2)得到解不等式组的第一个步骤:分别直接求出这两个不等式的解集。学生自行求解:
由不等式①,解得x>40
由不等式②,解得x<50
3)教师引导学生根据题意,容易得到:在这两个解集中,由于未知数x既要满足x>40,也要同时满足x<50,因此x>40和x<50这两个解集的公共部分,就是不等式组中x可以取值的范围。
(设计意图:让学生在教师的引导下探究不等式组的解集及其解法,养成自主探究的良好学习习惯。)
5、问题3:如何求得这两个解集的公共部分?
学生活动:将不等式①和②的解集在同一条数轴上分别表示出来。
(设计意图:启发学生可利用数轴的直观性帮助我们寻找这两个不等式解集的公共部分。)
教师活动:利用多媒体课件,用三种不同形式表示这两个解集,帮助学生求得这个公共部分。
(设计意图:结合介绍利用数轴确定公共部分的三种不同形式,突破本节课的难点,培养学生的观察能力和数形结合的思想方法。)
形式一:用两种不同颜色表示这两个解集
1)通过设置以下几个问题,要求学生通过观察、分组讨论、取值验证,自主得出结论。
(1)这两种颜色把数轴分成几个部分?
(2)每一个部分分别表示哪些数?
(3) 请每一小组的同学从这几个部分中各取2~3个数,分别代入两个不等式中,同时思考:哪部分的数既满足不等式①同时又满足不等式②?
2)学生通过自主探究、合作交流,得到这3个问题的正确答案。
3)得出结论:
只有红色和蓝色重叠的部分才既满足不等式①又同时满足不等式②。因此,红色和蓝色重叠的部分就是我们要找的x的可取值范围。
4)教师提问:两个不等式解集的界点:即实数40、50所在的点是否落在红色和蓝色重叠的部分?教师引导学生利用学过的验证法进行验证,并得出结论:两个界点没有落在红色和蓝色重叠的部分。
(设计意图:让学生对一系列的问题进行自主分析和解答,充分调动学生学习的主动性和积极性。同时在上述过程中,利用不同颜色的直观性,目的在于能让学生更清楚地找出不等式①和不等式②解集的公共部分。)
形式二:利用画斜线的方式:用两种不同方向的斜线分别画出x>40和x<50这两个部分的解集。
类似地,引导学生得出结论:两个解集的公共部分,就是图中两种不同方向斜线重叠的部分,从而得出结论。
形式三:结合课本,利用两条横线都经过的部分来确定两个解集的公共部分。
(设计意图:介绍不同的形式,让学生再一次鲜明、直观地体会:x的可取值范围是两个不等式解集的公共部分;进一步培养学生的观察能力和数形结合的思想方法。)
6、问题4:如何表示这个可取值范围?
教师分析:在数轴上,未知数x落在实数40和50之间。而我们知道,数轴上的实数,它们从左到右的顺序,就是从小到大的顺序。因此,我们可将这三个数先按从小到大的顺序书写出来,再用小于号依次进行连接,记为40
7、小结并解决课本问题:原不等式组中x的取值范围为40 (设计意图:首尾呼应,完成了实际问题的研究,通过这个研究过程,让学生进行感悟、归纳、领会知识的真谛。) 8、同时,类比一元一次不等式解集的几何意义,教师再次进行归纳: 在数轴上,若在40 一般地,几个不等式的解集的公共部分,叫做由它们所组成的不等式组的解集。解不等式组就是求它的解集。 9、结合上述学习过程,让学生和教师一起归纳解一元一次不等式组的步骤: (1)分别求出不等式组中各个不等式的解集; (2)把这些解集分别在同一条数轴上表示出来; (3)确定各个不等式解集的公共部分; (4)写出不等式组的解集。 (设计意图:及时进行小结,使学生对所学知识更加的系统化。) 讲评目标: 1、通过讲评,进一步巩固本单元知识点。 2、通过对典型错误的剖析、矫正、帮助学生掌握正确的思考方法和解题策略。 学习目标: 认真细致进行错例分析,用心思考,积极交流,总结经验,查漏补缺,体会数学方法和思想在解题中的应用。 教学重点、难点: 典型错误的剖析与矫正。 讲评过程: 一、整体回顾、介绍本次考试情况 1、本次考试平均分87.3分,及格率94.1%,优秀率68.6%,最高分110分,最低分21分。 2、根据本次成绩对前五名和进步比较大的学生进行表扬和鼓励。成绩前五名:李xx110分,翁x110分,张xx110分,杨x,王x,石xx,赵xx,时xx,沈xx,王xx107分。进步比较大的前五名学生:xxx。 二、教师分析学生在答题中存在的问题 1、部分学生对基础知识掌握不扎实,没有养成良好的学习习惯表现在不认真审题,不细心答题,如第6小题结果没有化简,第16小题没有注意x与y的顺序,第五大题的应用题,有的同学没有按题目的要求解,等。 2、部分学生计算的`能力不强,表现为计算速度慢,计算的准确率低,不能灵活的使用运算律及一些运算方法。如第1小题判断四个数能不能成比例的技巧,解比例时的一些运算方法,等。 3、不能运用所学知识灵活解决实际问题,分析问题、解决问题的能力有待提高。例如,解决实际问题的第2题,有部分学生按边长和数量成反比例关系进行计算,解决实际问题的第3题,有的同学先算面积,然后再用比例尺算实际面积,有半数以上的学生对于附加题无从下手,等。 三、学生自我分析试卷 学生的有一些问题是因为一时的疏忽做错;有一些是自己的知识不够牢固,经过自己的学习是可以自己解决的;有一些问题经过学生自己的再思考是可以自己解决的。象这一类的问题肯定可以学生自己处理好,那么就不需要老师来帮忙,只要给以时间和信心就可以了。 四、小组内互帮互助学习 当学生的问题自己解决掉自己能解决的之后,这时转入学生的互帮互助阶段,在小组内由学生提出不会的问题由会做的同学进行讲解。在这个阶段由学生给学生讲解达到学会的目的。组内都不会的问题就由组长记录并交给老师。 五、老师组织讲解 根据各小组的统计,根据各组情况由多到少(不会的小组数)的顺序来解决。经过了两次纠正(自纠和互纠),学生的问题基本解决,剩下的问题再由老师组织,让会做的小组给同学们讲解。讲解题思路,老师适当补充、引导、评价。 六、老师检查学生的掌握情况 学生自己的学习和相互帮助有没有成效要靠自觉,老师可以检查,拿出一部分比较有意义的,需要老师来讲解的问题检查学生,顺便让学生说出老师要说的话,然后有必要就补充、评价。让学生说出每一道题的考察内容解题技巧。 七、当堂检测 1、用2、4、8、4、写出比例式:( )。 2、行驶的路程一定,则车轮的周长和它的转数成( )比例。 3、一种精密零件长5毫米,把它画图上长6厘米,则比例尺是( ) 4、若5X-7Y=0,X:Y=( ) 5、在比例尺是1:200的图上,一个长方形的长是4㎝,宽是3㎝,这个长方形的实际面积是( )平方米。 6、一间房子要用方砖铺地,用边长3分米的方砖,需要86块。如果改用边长是2分米的方砖要( )块,当堂检测: 1、用2、4、8、4、写出比例式:( )。 2、在A×B=C中,当A一定时,B和C 成( )比例。 3、一种精密零件长5毫米,把它画图上长6厘米,则比例尺是( ) 4、若5X-7Y=0,X:Y=( ) 5、在比例尺是1:200的图上,一个长方形的长是4㎝,宽是3㎝,这个长方形的实际面积是( )平方米。 一、教学设计: 1、学习方式: 对于全等三角形的研究,实际是平面几何中对封闭的两个图形关系研究的第一步。的关系。它不仅是学习后面知识的基础,并且是证明线段相等、角相等以及两线互相垂练地掌握全等三角形的判定方法,并且灵活的应用。为了使学生更好地掌握这一部分内形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、出几何模型和运用所学内容,解决实际问题的过程,真正把学生放到主体位置。 2、学习任务分析: 充分利用教科书提供的素材和活动,鼓励学生经历观察、操作、推理、想象等活动问题、解决问题的方法,积累数学活动经验。培养学生有条理的思考,表达和交流的能将直观与简单推理相结合,注意学生推理意识的建立和对推理过程的理解,能运用自己以后的证明打下基础。 3、学生的认知起点分析: 学生通过前面的学习已了解了图形的全等的概念及特征,掌握了全等图形的对应边全等的条件做好了知识上的准备。另外,学生也具备了利用已知条件作三角形的基本作课的操作、探究成为可能。 4、教学目标: (1)学生在教师引导下,积极主动地经历探索三角形全等的条件的过程,体会利用 (2)掌握三角形全等的“边边边”、“边角边”、“角边角”、“角角边”的判定三角形的全等解决一些实际问题。 (3)培养学生的空间观念,推理能力,发展有条理地表达能力,积累数学活动经验 5、教学的重点与难点: 重点:三角形全等条件的.探索过程是本节课的重点。 从设置情景提出问题,到动手操作,交流,直至归纳得出结论,整个过程学生不仅得到得是经历了知识的形成过程,体会了一种分析问题的方法,积累了数学活动经验,这将数学。 难点:三角形全等条件的探索过程,特别是创设出问题后,学生面对开放性问题,要情况进行讨论,对初一学生有一定的难度。 根据初一学生年龄、生理及心理特征,还不具备独立系统地推理论证几何问题的能力,够全面,因此要充分发挥教师的主导作用,适时点拨、引导,尽可能调动所有学讨中来,使学生在与他人的合作交流中获取新知,并使个性思维得以发展。 6、教学过程(略) 教学步骤教师活动学生活动教学媒体(资源)和教学方式 7、反思小结 提炼规律 电脑显示,带领学生复习全等三角定义及其性质。 电脑显示,小明画了一个三角形,怎样才能画一个三角形与他的三角形全等?我们知道三个角分别对应相等,那麽,反之这六个元素分别对应,这样的两个三角形一定全等.但是能否尽可能少吗?对学生分类中出现的问题,予以纠正,对学生提出的解决问题的不同策略,要给予肯定和展学生个性思维。 按照三角形“边、角”元素进行分类,师生共同归纳得出: 1、一个条件:一角,一边 2、两个条件:两角;两边;一角一边 3、三个条件:三角;三边;两角一边;两边一角 按以上分类顺序动脑、动手操作,验证。教师收集学生的作品,加以比较,得出结论:只给出一个或两个条件时,都不能保证所画出的三角形一定全等。 下面将研究三个条件下三角形全等的判定。 (1)已知三角形的三个角分别为40°、60°、80°,画出这个三角形,并与同伴比学生得出结论后,再举例体会一下。举例说明: 如老师上课用的三角尺与同学用的三角板三个角分别对应相等,但一个大一个小,很再如同是:等边三角形,边长不等,两个三角形也不全等。等等。 (2)已知三角形三条边分别是4cm,5cm,7cm,画出这个三角形,并与同伴比较是否板演:三边对应相等的两个三角形全等,简写为“边边边”或“SSS”。 由上面的结论可知:只要三角形三边的长度确定了,这个三角形的形状和大小就确实物演示: 由三根木条钉成的一个三角形框架,它的大小和形状是固定不变的,三角形的这个性质举例说明该性质在生活中的应用 类比着三角形,让学生动手操作,研究四边形、五边性有无稳定性 图形的稳定性与不稳定性在生活中都有其作用,让学生举例说明。 题组练习(略) 4、(对有能力的学生要求把实际问题抽象成数学问题,根据自己的理解写出推理由,并能说明每一步的根据。)教师带领,回顾反思本节课对知识的研究探索过程,小结方法及结论,提炼数学思想在教师引导下回忆前面知识,为探究新知识作好准备。 议一议: 学生分小组进行讨论交流。受教师启发,从最少条件开始考虑,一个条件;两个条件;三个况渐渐明朗,进行交流予以汇总,归纳。 想一想: 对只给一个条件画三角形,画出的三角形一定全等吗?画一画: 按照下面给出的两个条件做出三角形:(1)三角形的两个角分别是:30°,50°(2)三角形的两条边分别是:4cm,6cm(3)三角形的一个角为30,一条边为3cm 剪一剪: 把所画的三角形分别剪下来。 比一比: 同一条件下作出的三角形与其他同学作的比一比,是否全等。学生重复上面的操作过程,画一画,剪一剪,比一比。学生总结出:三个内角对应相等的两个三角形不一定全等 学生举例说明 学生模仿上面的研究方法,独立完成操作过程,通过交流,归纳得出结论。 鼓励学生自己举出实例,体验数学在生活中的应用.学生那出准备好的硬纸条,进行实验,得出结论:四边形、五边形不具稳定性。 学生练习 学生在教师引导下回顾反思,归纳整理。 z+z平台演示 z+z平台演示,教师加以分析。学生分组讨论,师生互动合作。 经过对各种情况得分析,归纳,总结,对学生渗透分类讨论的数学思想。结论很显然只需学生想像即可,z+z平台辅助直观演示。学生动手操作,通过实践、自主探索、交流,获得新知。 一、 基本情况分析 1、学生情况分析: 通过上学期的努力,我班多数同学学习数学的兴趣渐浓,学习的自觉性明显提高,学习成绩在不断进步,但是由于我班一些学生数学基础太差,学生数学 成绩两极分化的现象没有显着改观,给教学带来很大难度。设法关注每一个学生,重视学生的全面协调发展是教学的首要任务。本学期是初中学习的关键时期,教学 任务非常艰巨。因此,要完成教学任务,必须紧扣教学目标,结合教学内容和学生实际,把握好重点、难点,努力把本学期的任务圆满完成。九年级毕业班总复习教 学时间紧,任务重,要求高,如何提高数学总复习的质量和效益,是每位毕业班数学教师必须面对的问题。经过与外校九年级数学教学有丰富经验的教师请教交流, 特制定以下教学复习计划。 2、教材分析: 本学期教学内容共四章,第二十六章、二次函数主要是通过二次函数图像探究二次函数性质,探讨二次函数与一元二次议程的关系,最终实现二次函数的 综合应用。本章教学重点是求二次函数解析式、二次函数图像与性质及二者的实际应用。本章教学难点是运用二次函数性质解决实际问题。 第二十七章、相似 本章主要是通过探究相似图形尤其是相似三角形的性质与判定。本章的教学重点是相似多边形的性质和相似三角形的判定。本章的教学难点是相似多这形的性质的理解,相似三角形的判定的理解。 第二十八章、锐角三角函数 本章主要是探究直角三角形的三边关系,三角函数的概念及特殊锐角的三角函数值。本章的教学重点是理解各种三角函数的概念,掌握其对应的表达式,及特殊锐角三角函数值。本章的教学难点是三角函数的概念。 第二十九章、投影与视图 本章主要通过生活实例探索投影与视图两个概念,讨论简单立体图形与其三视图之间的转化。本章的重点理解立体图形各种视图的概念,会画简单立体图形的三视图。本章教学难点是画简单立体图形的三视图。 二、 教学目标和要求 1、 知识与能力目标知识技能目标 理解二次函数的图像、性质与应用;理解相似三角形、相似多边形的判定方法与性质,掌握锐角三角函数有关的计算方法。理解投影与视图在生活中的应用。 2、过程与方法目标 通过探索、学习,使学生逐步学会正确合理地进行运算,逐步学会观察、分析、综合、抽象,会用归纳、演绎、类比进行简单地推理。通过学习交流、合作、讨论的`方式,积极探索,改进学生的学习方式,提高学习质量,逐步形成正确地数学价值观。 3、情感、态度与价值观目标 (1)进一步感受数学与日常生活密不可分的联系,同时对学生进行辩证唯物主义世界观教。 (2)通过体验探索的成功与失败,培养学生克服困难的勇气。 (3)通过小组交流、讨论有关的数学知识,培养学生的合作意识和交流能力。 (4)通过对实际问题的分析和解决,让学生体会数学的价值,培养学生的应用意识和对数学的兴趣。 三、 提高教学质量的主要措施 l、认真研读新课程标准,钻研新教材,根据新课程标准,扩充教材内容,认真上课,批改作业,认真辅导,认真制作考试试卷,也让学生学会认真学习。 2、兴趣是最好的老师,激发学生的兴趣,给学生介绍数学家、数学史、介绍相应的数学趣题,给出数学课外思考题,激发学生的兴趣。 3、引导学生积极参与知识的构建,营造民主、和谐、平等、自主、探究、合作、交流的氛围,分享快乐的学习课堂,让学生体会学习的快乐,享受学习。 4、运用新课程标准的理念指导教学,积极更新自己脑海中固有的教育理念,不同的教育理念将带来不同的教育效果。 5、培养学生良好的学习习惯,陶行知说:教育就是培养习惯,有助于学生稳步提高学习成绩,发展学生的非智力因素,弥补智力上的不足。 6、加强学生解题速度和准确度的培养训练,在新授课时,凡是能当堂完成的作业,要求学生比速度和准确度,谁先完成谁就先交给老师批改,凡是做的全对要给予奖励。 7、加强个别辅导,加强面批、面改,加强定时作业的训练。并进行作业展览,对作业书写的好又全部正确的贴在学习园地中。 8、积极主动的与其他教师协同配合,认真钻研教材,搞好集体备课,不断学习他人之长处。 现代教学论研究指出,从本质上讲,学生学习的根本原因是问题。在数学课堂教学中,教师可根据不同的教学内容,围绕不同的教学目标,设计出符合学生实际的教学问题,围绕所设计的问题开展教学活动。这样,在课堂教学环节中,问题该怎样设计?围绕问题该怎样进行教学,才能使教学效率得以提高?这是摆在我们面前急需解决的问题。 本文将结合自己的教学实践,就问题设计的策略及反思等方面谈谈自己的看法。 一、注重问题情境的创设 著名数学家费赖登塔尔认为:“数学源于现实又寓于现实,数学教学应从学生所接触的客观实际中提出问题,然后升华为数学概念、运算法则或数学思想。”这一观念既反映了数学的本质,同时说明了在数学课堂教学中创设问题情境的重要性。比如,在《有理数的加法》一节的教学导入时,我首先出示了一周来本班的积分统计表(表中的得分用正数表示,失分用负数表示,)让学生观察: 星期 一 二 三 四 五 六 合计 积分 +3 -2 -4 -2 +2 +4 然后提出问题:“谁能帮我们班算出这一周的总积分呢?”结果我发现大多数同学能用“抵消”的方法统计出这一周本班的总积分。然后我出了一道算式题:“(+3)+(-2)+(-4)+(-2)=?”发现学生不知道该怎样算。当学生产生这样的认知冲突时我便引入了本节课要学习的内容,最后我用表中的数据分成了几种类型,如正数加正数、负数加负数、正数加负数等,展开新知学习,教学效果较以前有明显改观。 本节课成功之处在于:(1)导入的情境问题贴近学生的现实,调动了学生的积极性。(2)情境问题为后面的教学埋下了伏笔,引发了学生的认知冲突。当然,情境问题的创设不当,会直接影响教学。比如,在《函数》一节的教学时,我用游乐园中的摩天轮引入,当我提出问题:“同学们,当你坐在摩天轮上,随着时间的变化,你离开地面的高度是如何变化的?”我发现学生几乎没有反应,只是偶尔听到:“摩天轮?”“很危险……”本来是一个很典型的函数问题,只因为农村学生对该情境的认识模糊,一时没有进入到虚拟情境中来,导致课堂开端出现“僵局”,也影响了后面的教学工作的胜利开展。 2、教学重点、难点处的问题设计 初中数学课堂教学中重点与难点的处理将直接影响教学效果。通过设计好的问题串可以强化重点与突破难点。例如,《结识抛物线》一节的教学重点就是做二次函数y=x2的图像并根据图像认识和理解函数的性质。而作图过程又是一个难点问题,要从所画的图像中发现并归纳性质,首先得画出较准确的函数图像。在学生画图像的过程中,我抓住学生的几种错误画法提出了三个问题让学生讨论交流:(1)根据你画的图像,给自变量x任取一个值,函数y有唯一的值与它对应吗?(2)自变量x的范围是什么?(3)在0 3、例题或课堂练习中的问题设计 例题教学具有及时巩固知识和灵活运用知识的双重功能,随堂练习是检查学生的数学学习效果和培养学生思维的有效手段之一。数学课堂教学中,教师通过优选例题,精心设计层次分明的练习,能够让学生以积极的态度去思考并解决问题,获得问题解决的成就感和快乐感。例如笔者在《反比例函数的图像与性质》一节的教学中设计了一道这样的`问题:已知A(-2,y1)、B(-1,y2)、C(2,y3)三点都在反比例函数y=k/x(k>0)图像上,(1)比较y1、y2、y3的大小关系。(2)若D(a,y1)、E(b,y2)、F(c,y3)三点也在反比例函数y=k/x(k>0)的图像上,其中a0判断y1、y2、y3的大小关系。教学中我发现多数学生对问题(1)采用了直接代入计算的方法得到结果,对问题(2)显然用代入法难以得到结果,这时,我让学生小组讨论来解决。经过讨论后,学生A回答:“因为k>0时,反比例函数y随x的增大而减小,而a 4、在学习反思中的问题设计 初中学生学习数学的方法相对欠缺,学生“重结论,轻过程”的现象较普遍,对学习结果的反思意识淡薄,自我评价不彻底,做错的题目一错再错。作为教师,在平时的教学中要注重引导,彻底分析错因,让学生在错题中有反思的机会。例如,在一元一次方程的教学中,我发现学生解含有分母的方程时很容易出错,针对学生做错的题目,我设计了如的表格: 通过引导学生对错因彻底分析与校正,学生明白了产生错误的真正原因是什么,认识到了自己的不足。然后我出了几道解方程的练习,结果发现,学生确实重视了错误,效果明显有所好转。 总之,在数学教学中,教学问题的设计确实是一种学问,是一种艺术。要让学生在实实在在的问题情境中去亲历体验,在对问题的分析、探索与交流的过程中主动思考,与人分享成果,来体验成功的快乐,增强他们的自信心。 7月8日至7月11日去宁波大学参加了“以深度学习为指导的初中数学习题教学与设计”培训活动,感受颇多。 本次培训在3月份已经报名,在负责人解老师第一次发短信确定是否参加培训时,我是打了退堂鼓的,担心疫情,不敢参加,但是我老公告诉我疫情形势还可以,你去去没问题的,然后我才再次确定参加的,再加上从嘉善去宁波路程遥远,我们中午才到,以致于解老师一口叫出我和蒋老师的姓名,我是很惊喜的。通过后面的听课,心里暗自庆幸幸亏过来了,真是不虚此行! 第一堂课是宁波市名师、鄞州区曙光中学教研组长章剑雄老师的课,看着名字以为是一位高大的男老师,结果居然是一位瘦弱的女老师,小小地惊讶了一下,通过听章老师的讲座发现章老师瘦弱的身材却聚集着庞大的能量,她的几何直观教学策略完美地诠释了几何直观的内涵以及“数形结合百般好”。听了章老师的课我才发现原来有些几何图形的题目不用复杂的计算单凭图形的剪拼就可以快捷得出答案,这对于计算困难的同学来说是一场及时雨。很多时候,学生会列式,但很难算对,图形的计算往往都很复杂若是单凭图形变换就能得出结果将大大减少学生的计算量,从而提高正确率。还有很多代数题从代数的角度很难解决或者比较麻烦,若是能够画出与之相对应的图形,则可以事半功倍!虽然我们平时也在用数形结合,但是章老师用的是炉火纯青,我们自愧不如!哎,得抓紧修炼呀! 第二堂课是浙江省特级教师、宁波市鄞州区初中数学教研员潘小梅老师的《解题教学的思考与实践》。潘老师的第一句话就指明数学教学以及学习的核心:掌握数学就意味着善于解题。然后灵魂拷问:这三句话每个数学老师都应该牢记,你们会背吗?(会用数学眼光观察现实世界、会用数学思想思考现实世界、会用数学眼光表达现实世界)我暗暗汗颜┅┅潘老师以具体的题目来一点点给我们展示思维如何变无限为有限,如何找到问题的突破口等等。然后潘老师还给我们展示了她这一年来关于解题教学的`尝试:从中考复习解题教学到基本图形的教学,再到中考数学压轴题,最后是学生说题。每一块内容都讲得非常详细,对于培训的我们来说是满满的收获! 后面的课我就不一一赘述了,总之每个老师的课都很接地气,很实用,干货满满,期间解老师还安排李小红老师给我们来了一场《向易经借智慧》的讲座,李老师用诙谐幽默的话语给我们带来了一场艺术的盛宴,最后以黄伟健老师的《不仅仅只是解题》的讲座完美收官。黄老师是最接地气的一位老师,他一直致力于如何让不会做题的人也能得分的研究,也给予我很多启示。 在本次培训中,不仅上课的老师让我们感到不虚此行,本次培训负责接待和安排的解老师也让我们非常感动,一切事宜都考虑的非常周到,我们的吃、住、学都很舒适,感谢本次上课的所有老师以及解老师,谢谢你们! 教材与学情: 解直角三角形的应用是在学生熟练掌握了直角三角形的解法的基础上进行教学,它是把一些实际问题转化为解直角三角形的数学问题,对分析问题能力要求较高,这会使学生学习感到困难,在教学中应引起足够的重视。 信息论原理: 将直角三角形中边角关系作为已有信息,通过复习(输入),使学生更牢固地掌握(贮存);再通过例题讲解,达到信息处理;通过总结归纳,使信息优化;通过变式练习,使信息强化并能灵活运用;通过布置作业,使信息得到反馈。 教学目标: ⒈认知目标: ⑴懂得常见名词(如仰角、俯角)的意义 ⑵能正确理解题意,将实际问题转化为数学 ⑶能利用已有知识,通过直接解三角形或列方程的方法解决一些实际问题。 ⒉能力目标:培养学生分析问题和解决问题的能力,培养学生思维能力的灵活性。 ⒊情感目标:使学生能理论联系实际,培养学生的对立统一的观点。 教学重点、难点: 重点:利用解直角三角形来解决一些实际问题 难点:正确理解题意,将实际问题转化为数学问题。 信息优化策略: ⑴在学生对实际问题的探究中,神经兴奋,思维活动始终处于积极状态 ⑵在归纳、变换中激发学生思维的灵活性、敏捷性和创造性。 ⑶重视学法指导,以加速教学效绩信息的顺利体现。 教学媒体: 投影仪、教具(一个锐角三角形,可变换图2-图7) 高潮设计: 1、例1、例2图形基本相同,但解法不同;这是为什么?学生的思维处于积极探求状态中,从而激发学生学习的积极性和主动性 2、将一个锐角三角形纸片通过旋转、翻折等变换,使学生对问题本质有了更深的认识 教学过程: 一、复习引入,输入并贮存信息: 1.提问:如图,在Rt△ABC中,∠C=90°。 ⑴三边a、b、c有什么关系? ⑵两锐角∠A、∠B有怎样的关系? ⑶边与角之间有怎样的关系? 2.提问:解直角三角形应具备怎样的条件: 注:直角三角形的边角关系及解直角三角形的条件由投影给出,便于学生贮存信息 二、实例讲解,处理信息: 例1.(投影)在水平线上一点C,测得同顶的仰角为30°,向山沿直线 前进20为到D处,再测山顶A的仰角为60°,求山高AB。 ⑴引导学生将实际问题转化为数学问题。 ⑵分析:求AB可以解Rt△ABD和 Rt△ABC,但两三角形中都不具备直接条件,但由于∠ADB=2∠C,很容易发现AD=CD=20米,故可以解Rt△ABD,求得AB。 ⑶解题过程,学生练习。 ⑷思考:假如∠ADB=45°,能否直接来解一个三角形呢?请看例2。 例2.(投影)在水平线上一点C,测得山顶A的仰角为30°,向山沿直线前进20米到D处,再测山顶A的`仰角为45°,求山高AB。 分析: ⑴在Rt△ABC和Rt△ABD中,都没有两个已知元素,故不能直接解一个三角形来求出AB。 ⑵考虑到AB是两直角三角形的直角边,而CD是两直角三角形的直角边,而CD均不是两个直角三角形的直角边,但CD=BC=BD,启以学生设AB=X,通过 列方程来解,然后板书解题过程。 解:设山高AB=x米 在Rt△ADB中,∠B=90°∠ADB=45° ∵BD=AB=x(米) 在Rt△ABC中,tgC=AB/BC ∴BC=AB/tgC=√3(米) ∵CD=BC-BD ∴√3x-x=20 解得 x=(10√3+10)米 答:山高AB是(10√3+10)米 三、归纳总结,优化信息 例2的图开完全一样,如图,均已知∠1、∠2及CD,例1中 ∠2=2∠1 求AB,则需解Rt△ABD例2中∠2≠2∠1求AB,则利用CD=BC-BD,列方程来解。 四、变式训练,强化信息 (投影)练习1:如图,山上有铁塔CD为m米,从地上一点测得塔顶C的仰角为∝,塔底D的仰角为β,求山高BD。 练习2:如图,海岸上有A、B两点相距120米,由A、B两点观测海上一保轮船C,得∠CAB=60°∠CBA=75°,求轮船C到海岸AB的距离。 练习3:在塔PQ的正西方向A点测得顶端P的 仰角为30°,在塔的正南方向B点处,测得顶端P的仰角为45°且AB=60米,求塔高PQ。 教师待学生解题完毕后,进行讲评,并利用教具揭示各题实质: ⑴将基本图形4旋转90°,即得图5;将基本图形4中的Rt△ABD翻折180°,即可得图6;将基本图形4中Rt△ABD绕AB旋转90°,即可得图7的立体图形。 ⑵引导学生归纳三个练习题的等量关系: 练习1的等量关系是AB=AB;练习2的等量关系是AD+BD=AB;练习3的等量关系是AQ2+BQ2=AB2 五、作业布置,反馈信息 《几何》第三册P57第10题,P58第4题。 板书设计: 解直角三角形的应用 例1已知:………例2已知:………小结:……… 求:………求:……… 解:………解:……… 练习1已知:………练习2已知:………练习3已知:……… 求:………求:………求:……… 解:………解:………解:……… 新课程标准指出:“问题是思想方法、知识积累和发展的逻辑力量,是生长新知识、新方法的种子。”有问题才有探究,有探究才有发展、有创新。学生思维的过程受情境的影响。良好的思维情境会激发思维动机,唤起求知欲望;不好的思维情境会抑制学生的思维热情。因此,创设良好的思维情境在数学教学中就显得十分重要。教师通过自己的教学活动,有意识地培养学生善于在好的问题情景下主动建构新知识,积极参与交流和讨论,不断提高学习能力,发展创新意识。 一、联系学生的生活实际,创设问题情境 生活离不开数学,数学也离不开生活。实践证明:联系学生已有的生活经验和学生熟悉的事物入手展开教学,有利于学生更好的掌握数学知识。 例如在教学菱形性质时,导入时是这样设计的: 1、我们大家在日常生活中见过哪些菱形图案?(看谁说的多)学生争先恐后地说: (1)吃过的菱形形状的食物 (2)春节时门上贴的剪纸花 (3)居室装饰地板砖 (4)中国结 (5)菱形衣帽架等。 2、为什么把这些图案设计成菱形呢? 3、菱形到底有哪些特殊的性质和运用呢?(板书课题) 通过本节课的学习之后大家可以总结出来。 然后通过画图和电脑显示,让学生去猜想,去探究,去发现,去论证。从而弄清了菱形的定义、性质、面积公式及简单运用, 然后让学生思考日常生活中还有哪些菱形性质方面的应用。 这样通过创设问题情境,让学生产生一种好奇,一种对知识的渴望,为探究活动创造了良好的条件,为本节课的成功创造了条件。同时让学生感受到了数学问题来源于生活。让学生多留意身边的事物转化成数学问题。但教学中要注意从实际出发,创设学生所熟悉的喜闻乐见的东西。同时不是为情趣而情趣,要注意增加情趣的内涵。注意经常引导学生用数学的眼光看待周围的事物,培养学生数学问题意识。 二、变更表述形式,创设问题情境 在数学教学中教师可以运用直观形象的具体材料,创设问题情境,设障布疑,激发学生思维的积极性和求知需要的'一种教学方法——有时可通过变更问题的表述形式,引发学生兴趣。 例如:“等腰三角形的判定定理”的教学,为引出等腰三角形的判定定理,通常提出问题:“如图(1),△ABC要判定它是等腰三角形 BC A 有哪些方法呢?”这样出示问题显得单调又乏味。为了同样的教图(1)学目的(引导学生获得判定定理),教师若能根据“性质定理”与“判定定理”的内在联系,在引导学生性质定理后,提出这样一个实际问题“如图(2),△ABC是等腰三角形,AB=AC,因不小心,它的一部分被墨水涂没了,只留下一条底边BC和一个底角∠C,试问能否把原来的△ABC重新画出来?”不仅引发了生动活泼的讨论形式,而且也收到良好的引发效果,(有的先度量∠C度数,再以BC为边作∠B=∠C;有的取BC中点D,过D作BC的垂线等)。由此可见,在定理或概念性较强的性质的教学中,应尽力创设问题情境,使学生认识到所学内容的意义,使他们产生学习需要,形成学习的内驱力,诱发学生积极思维,在教师的指导下,让学生主动去探索解决问题的办法,在实践中培养学生的创造能力。 三、猜想验证法,创设问题情境 在数学教学中,利用猜想验证的课堂教学模式创设问题情境,可以积极的促进学生有效的参与课堂教学,学生兴趣高涨,主动的进行猜想验证。 例如,在教学“三角形的内角和”时,我先请同学们试先量一量自己准备好的三角形的每一个内角的度数,然后告诉我其中两个内角的度数,我迅速的说出第三个内角的度数。同学们都感到很惊讶!为什么老师能很快的说出第三个内角的度数呢?通过观察他们发现:每个三角形的内角和都是180度。我问他们是不是任何一个三角形的内角和都是180度呢?他们的回答是肯定的。我说这只不过是你们的一个猜想,下面就请同学们利用你手中的学具来验证你的猜想。于是,同学们立刻想到了手中的三角板,积极的行动起来证明自己的猜想。 总之,创设问题情境,培养学生问题意识,一方面能激发学生学习动机、培养创新思维,是新课程理念下数学教学的重要环节。另一方面有助于学生积极地建构数学知识,在情境中自主的参与探究和相互交流,从而达到意义建构的目的,提高课堂教学的有效性。当然教学没有最好,只有更好,让我们在今后的教学过程中不断探索,不断创新,争取更打的进步。 【初中数学教学设计】相关文章: 初中数学教学设计15篇11-25 小学数学的教学设计06-24 数学教学设计反思05-20 小学数学教学设计07-21 数学面积的教学设计08-19 小学数学教学设计11-29 初中数学教学总结01-28 田忌赛马数学教学设计06-09 数学《平行与垂直》教学设计10-27 人教版小学数学教学设计02-21初中数学教学设计9
初中数学教学设计10
初中数学教学设计11
初中数学教学设计12
初中数学教学设计13
初中数学教学设计14
初中数学教学设计15