关于小学数学教案模板锦集十篇
作为一位兢兢业业的人民教师,常常要写一份优秀的教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。来参考自己需要的教案吧!以下是小编为大家收集的小学数学教案10篇,供大家参考借鉴,希望可以帮助到有需要的朋友。
小学数学教案 篇1
教学目标:
1、使学生掌握分数乘加、乘减除加、除减混合运算的顺序,能正确地进行计算。
2、在学习的过程中培养学生的合作意识及认真、仔细的良好学习习惯。
3、运用分数乘除法的相关定律解决实际问题。
教学重点:熟练掌握运算定律,灵活、准确地进行简便计算,运用分数乘除法解决实际问题。
教学难点:运用分数乘除法的相关定律解决实际问题。
温故案
一、知识要点:分数乘除法、倒数、比。
1、分数乘法的意义:(1)分数乘整数,就是求几个相同 的 的 运算。
(2)一个数(整数或分数)乘分数,就是求 的 是多少。
2、分数除法的意义:分数除法的意义与整数除法的意义 ,就是已知两个因数的 和其中一个 ,求另一个 的运算。
3、分数乘法的计算(分数和整数相乘、分数乘分数)。
因为整数都可以看成分母是1的分数,所以分数乘法的计算方法是用 相乘的积作 ,用
相乘的积作 ,能约分的要先 ,然后再计算。
4、分数除法的计算(分数除以整数、一个数除以分数)。
在分数除法中,除以一个不等于0的数,等于乘以这个数的 。
5、运用乘法运算定律进行分数的简便运算:分数乘法中进行分数的简便运算时经常要用到的运算定律有 。
6、分数四则混合运算:(1)乘除混合运算的,遇到除以一个数,就转化成 这个数的
然后采用一次约分的方法计算。(2)四则混合运算的,按先 后 的运算顺序进行计算,有括号的,先算 ,再算 。
7、倒数的意义和求倒数的方法: 互为倒数;求一个数(0除外)的倒数,只要把这个数的分子和分母 。注意:1的倒数是 ,0有倒数吗?
8、比的意义和基本性质:两个数 又叫做两个数的比。在两个数的比中,比号前面的数叫做比的 ,比号后面的数叫做比的 ,两者相除多得的商叫做 。比的前项和后项同时 或 相同的数, 不变,这叫做比的基本性质。
9、比和分数、除法的关系。
比前项比号后项比值
除法
分数
巩固案
二、跟踪练习
(一)填空题:
1、40分=( )小时 3/5千米=( )米 23×( )=1 1.5和( )互为倒数。
2、 ( )∶8=1.2∶( )=0.75=( )÷6=( )折=( )成
3、把一根4米长的绳子平均分成5段,每段长( )米,每段占全长的( )。
4、把盐和水按1∶19的比例配成盐水,盐占盐水的( )(填分数)
5、一根钢材长6米,若用去1/2米,还剩( )米;若用去它的1/2,还剩( )米。
6、甲数是乙数的1.6倍,那么甲数和乙数的比是( )∶( )。
7、从甲地到乙地,客车要行4小时,货车要行5小时,客车和货车的速度比是( )∶( )。
8、一个数的2/3是24,这个数的5/6是( )。
(二)判断题:
1、1米的1/2 和3米的1/2 一样长。( )
2、两个分数相除,商一定大于被除数。( )
3、如果a÷b=4 ,b就是a的4倍.( )
4、把10克糖放入100克水中,糖占糖水的10%。( )
5、王芳看一本200页的童话书,第一天看了全书的1/5,第二天应从40页看起。( )
(三)计算:
2×3/4= 3/8×6= 3/10×2/3= 7/25×15/14= 6/13÷4= 5/7÷5/2=
30-1.6÷4/15= 3/5×1/2+3/5÷1/2= 1/5÷6/25-7/2×2/8= (0.75-3/16) ÷(2/9+1/3)=
(四)列式计算:
1、8的2/7与5/7的8倍的'和是多少? 2、18的5/27减去3/7是多少?
3、2/3与5/12的和的6/7是多少? 4、42的6/7与21的1/3的和是多少?
(五)简单应用:
1、有一个长方形的花坛,长是3/4米,宽是长的2/3,这个花坛的宽是多少米?面积是多少?
2、李叔叔录入论文,3小时录了这篇论文的1/3,照这样的速度工作8小时,可以录入这篇论文的几分之几?
3、一共有240千克水果糖,每袋装1/4千克,才装完了3/4,他们已经装完了多少袋?
知新案
1、某鞋店进来皮鞋600双。第一周卖出总数的 15 ,第二周卖出总数的 38 。
⑴两周一共卖出总数的几分之几?⑵两周一共卖出多少双?⑶还剩多少双?
2、六年级同学给灾区的小朋友捐款。六一班捐了500元,六二班捐的是六一班的45 ,六三班捐的是六二班的 98 。六三班捐款多少元?
3、一件西服原价180元,现在的价格比原来降低了15 ,现在的价格是多少元?
4、希望小学三年级有学生216人,四年级的人数比三年级多 29 ,四年级有学生多少人?
小学数学教案 篇2
教学目标:
1、认识千米,初步建立1千米的长度概念,知道1千米等于1000米。
2、会进行长度单位间的换算及简单的计算。
3、进一步培养学生的估测意识和实践能力。
教学重点:
建立1千米的长度概念,会用千米表示实际长度。
教学准备:
要求学生到路边观察路标,教师制作一块路标。
教学过程:
一、复习导入
1、教师提问:我们都学了哪些长度单位?
学生回答后,让学生具体表示一下1毫米、1厘米、1分米及1米的长度。
2、教师说明:我们以前学过的长度单位比较大的是米。你们还见过或听说过比米大的长度单位吗?
学情预设:学生可能会提到“千米”。
二、探究新知
1、认识千米。
教师出示例3的情境图。(有条件的学校也可以播放提前录制好的视频录像,录像中出现路牌标志)
提出下面的问题:类似图中的情境你见过吗?从图中你知道了什么?
[学情预设:看到上面的情境图,学生一下子会调出已有的知识经验,他们会想到周围的路标。]
学生根据自己的生活经验解释路标上的“21千米”和“23千米”是什么意思。
教师指出:在计量比较长的路程的时候,通常用千米作单位,千米也叫做公里。千米是比米大的长度单位。
2、出示老师收集到的学校附近的路标,让学生理解、体会从某路口到当地某个标志性建筑的路程是多少千米的含义。
3、建立1千米的长度概念
(1)师:那么1千米的路程有多远呢?它与我们以前学过的长度单位“米”有什么关系呢?
同学们都喜欢上体育课,(教师出示学校操场的图片)学校操场的跑道一圈是400米(注:每个学校的跑道可能不相同,这里仅以400米为例说明大体教学思路,实际教学时,尽可能用学生身边的数据),算一算,跑几圈就是1000米?
教师指出:1000米就可以用较大的长度单位来表示,就是千米。
板书:1千米(公里)=1000米
教师:同学们上学,有步行的,有骑自行车的,有坐公交车的,还有父母开车接送的。人步行每小时可以走5千米,骑自行车每小时可行15千米,坐公交车每小时可以行40千米。你们能估计一下从自己家到学校有多少千米吗?
(2)实际感受1千米。
到操场上量出100米的距离,让学生仔细观察一下。并让学生按一般的步行速度实际走一走,所需时间大约是1分十几秒。(注:这个教学环节也可以放到课前进行)。然后告诉学生10个这样的长度就是1千米,一般步行12分左右的距离大约是1千米,并让学生想象一下10个100米有多远。
4、完成教科书第8页上的“做一做”。
到校门口,以小组为单位,互相说一说(估)从学校门口到什么地方大约是1千米?在确保学生安全的前提下,可以组织学生到校外走1千米的活动,感受1千米的距离。(注:如果条件不允许,此题可以作为课外作业)
5、教师出示教科书第22页的例5。
3千米=( )米 5000米=( )千米
教师放手让学生先独立填写,然后让学生在组内互相说说是怎样想的。
通过学生回答,使学生明白:1千米是1000米,3千米是3个1000米,就是3000米;1000米是1千米,5000米是5个1000米,就是5千米。
6、练一练。
6000米=( )千米 4千米=( )米
( )米=7千米 9000米=( )千米
[设计意图:本节课的`教学,教师没有平均使用力量,教学时把重点放在千米的认识上,长度单位间的变换由于学生基本上属于“教师不讲就会”的状态,所以教师花费的教学时间相对就少一些。]
三、巩固练习
1、指导学生完成练习二第1、2题。
第1题,是关于物体运动速度的练习,目的是让学生对常见物体运行速度有一定的认识。可以先让学生独立完成,然后再进行反馈。
第2题,目的是帮助学生进一步感受千米在生活中的应用。可以让学生独立完成。
2、练习二第3题。
学生在教科书上独立完成,然后集体订正。
3、解决生活中的问题。
(1)老师家离学校大约有4千米的路程,如果让你选择,你会选择什么交通工具来学校?为什么?大概需要多少时间?
(2)妈妈带小明坐长途汽车去看奶奶,途中要走308千米。他们早上8时出发,汽车平均每小时行80千米,中午12时能到达吗?
四、课外拓展
1、汽车在高速公路上行驶每小时不能超过( )千米,磁悬浮列车每小时可行驶( )千米,地球绕太阳每秒运行( )千米。马拉松长跑比赛全程大约( )千米。(课后可在父母的帮助下到图书馆或网上查找这些资料。)
2、写一篇数学日记:《我心目中的千米》
[设计意图:教师在落实了教材所设定的教学目标后,课末布置了学生课后实践调查活动,把学生带向了研究性学习的行为中,为学生自主学习创造了环境。]
小学数学教案 篇3
一、【教学目标】
知识与技能:
1、在“堆一堆”和“玩一玩”以小的活动中,积累对图形特征和利用数学解决问题的经验。
2、能够从游戏中获取数学信息,体会学过的立体图形的特点并用10以内数的加减法来解决游戏中的问题,尝试寻找取胜的策略。
方法与过程:
通过游戏的方法,对学过的内容加以巩固,并获得取胜策略。
情感态度价值观:
1、激发学生学习兴趣。
2、使学生在游戏中体验到数学知识的有趣和重要的,获得良好情感体验。
3、体会数学思想,锻炼思维能力,积累思考经验,开阔眼界。
二、【教学重点】
1、在“堆一堆”和“玩一玩”以小的活动中,积累对图形特征和利用数学解决问题的经验。
2、能够从游戏中获取数学信息,体会学过的立体图形的特点并用10以内数的加减法来解决游戏中的问题,尝试寻找取胜的策略。
三、【教学难点】
在发现数学信息,解决数学问题的过程中,尝试寻找取胜的策略。
四、【教学过程】
(一)谈话导入游戏
师:同学们,你们喜欢玩游戏吗?这节课我们就来玩游戏,也许大家可能在游戏中有许多有趣的发现呢?
(二)游戏一“堆一堆”
1、赛前准备
(1)分组:可以分为几个大组进行比赛。
(2)比赛用品的分发:每组准备相同的几何体。
(3)赛前要检查物品数量与形状。
师:请大家数一数,在小组内说一说,学具中都有哪些好朋友?它们是什么形状?有几个?
2、明确游戏规则
(1)打开书自己阅读游戏规则。
(2)讨论游戏规则中讲了什么。
3、开展比赛,并计时
(1)游戏活动时间5分钟。
(2)教师发出指令,开始游戏。
(3)总结此轮游戏中的经验。
(4)进行第二轮游戏。
(5)再次总结,得出堆得又快又好的'方法。
(6)进行第三轮游戏,时间可限制在4分钟内。
4、决出胜者。
5、还可以进行全班赛。
6、全班总结交流。
游戏中你发现了什么?说一说。
(三)游戏二 “玩一玩”
1.游戏前准备
认牌识点数:
(1)抽出其中的几张牌,请学生说出牌面的点数。
(2)尤其是对A的认识,知道A代表1。
2、明确游戏规则
(1)打开书自己阅读游戏规则。
(2)讨论游戏规则中讲了什么。
(3)因为规则比较复杂,教师结合扑克牌做必要提示。
3、教师根据主题进行讲解。
(1)引导学生对游戏中出现的可能性进行思考,并进行判断。
例如:每人的点数已知,现在淘气的点数是8,笑笑的点数是9,淘气不继续摸牌肯定赢不了,所以就要引导学生讨论:淘气摸到几才能获胜?
(2)提醒学生在玩的过程中,需要不断计算、思考、判断。
4、小组开展比赛。
(1)分组:可以分为4人小组进行比赛。在明确游戏规则和小组成员后,开始游戏。
(2)教师在各组间巡视,进行帮助指导。
(3)总结此轮游戏中的经验。
(4)进行第二轮游戏。
(5)再次总结,得出堆得又快又好的方法。
(6)根据时间,可以进行第三轮游戏。
(四)全班总结交流。
全班交流,畅谈自己在游戏中的感受和体会,以及游戏中发现的其他问题,或是游戏中要想取胜的“秘诀”等。
(五)课外练习
同学们,这些游戏好玩吗?
回家后可以把这些好玩的游戏介绍给院子里的小朋友或爸爸、妈妈和他们一起玩一玩,好吗?
小学数学教案 篇4
一、教学内容:
54——55页
二、教学目标:
1、在已有生活经验的基础上,初步理解平均分的含义和除法的意义,了解有关0的除法。
2、能用除法解决一些简单的数学问题,初步培养发现问题和解决问题的能力。
3、感受数学与生活的密切联系,提高学习数学的兴趣。
三、教学重点、难点
理解有关0的除法,培养学生的解题能力。
四、教学过程:
(一)、仔细观察画面,说说从图中都看到了什么?发现了什么问题?
学生可能提出“每只猴子平均可以分几个月亮?”
(二)、学习0的'除法
问题:把几个月亮平均分?分给几个猴子呢?
方法:让学生在独立思考的基础上进行交流,鼓励学生用自己的语言把想法表达清楚。
列出除法算式:0÷5=0(个)
引导:分给6个猴子呢?0÷6=0(个)
分给7个猴子呢?0÷7=0(个)
得出结论:0除以任何不是0的数,都得0。
小练习:0÷3=0÷8=0÷9=6×0=0×8=
(三)、巩固练习
做自主练习1和2
(四)、拓展练习
剪窗花
你能提出什么问题?
教学反思:
大部分同学内容能够掌握有关0的除法,但在实际操作中却不是很熟练,必须多做练习。
小学数学教案 篇5
《数学课程标准》在解决问题的课程目标中对解决问题的策略教学提出了明确要求:形成解决问题的一些基本策略,体验解决问题策略的多样性。为了将解决问题的策略教学目标落到实处,必须先解决两个问题:其一,如何清晰地界定解决问题的策略,明确义务教育阶段小学生应该形成哪些解决问题的策略?其二,如何帮助学生形成解决问题的一些基本策略,并体验解决问题策略的多样性?
一、关于解决问题的策略
对解决问题的策略,人们已经有很多研究。波利亚在《怎样解题》一书中谈及的解决问题的策略有普遍化、特殊化、类比、猜想和检验、画一张图、建立方程、倒着干等。浙江省特级教师朱德江认为解决问题的策略有尝试和检验、画图、操作、找规律、制表、从简单的情况人手、整理数据、从相反的方向思考、列方程、逻辑推理、改变观点等11种。加拿大的某套数学教材中将解决问题的策略分为10种,并采用图文结合的方式形象地呈现如下:
我国课程改革下的实验教材,不再以传统的算术应用题内容为线索,而是以学生的生活经验为线索,以所学运算体现的数量关系为线索,以体现解决问题的策略为线索。人教版教材编排了图示、列举、列表、找规律、从简单情况入手等解决问题的策略。北师大版教材编排的解决问题的策略有画图、列表、猜想与尝试、从特例开始寻找规律等。苏教版教材采用分散与集中相结合的原则,从四年级起集中编有解决问题的策略单元,安排学生学习摘录与列表、画图、一一列举、倒推;替换、假设、转化等策略。
从以上的分析,我们可以大致明晰教材中解决问题的策略的内容。
二、学习解决问题策略的三个阶段
教师不但要思考解决问题的策略有哪些,还要思考怎样帮助学生形成这些策略。
解决问题策略的学习,不可能脱离解决问题的过程,必须和解决问题紧密结合在一起。也就是说,解决问题策略的学习是基于解决问题、为了解决问题的。解决问题,首先是作为学生感受、体会、反思解决问题策略的手段,其次是让学生运用所学策略解决新的问题。对学生来说,解决问题的活动价值,不仅仅是解决某一类问题,获得某一类 问题的结论,更重要的是在解决问题的过程中获得发展,即基于解题的经历,形成相应的经验、技巧、方法,进而通过反思和提炼,形成一定的解决问题的策略。学生认识、理解、掌握解决问题的策略一般要经历潜意识阶段、明朗化阶段、深刻化阶段。教师要顺应学生的学习心理,展开解决问题策略的教学。
1.走出潜意识阶段
对学生来说,学习解决问题的策略,并不是建空中楼阁。他们在日常生活中已经积累了一些关于策略的认识,在以往解决问题的过程中也已经初步积累了解决问题的经验,但并不一定关注到了解决问题时隐藏在背后支撑解决问题的策略,即学生对策略的认识处于潜意识阶段。在这个阶段,学生往往关注具体的问题是否得以解决,对解决问题的策略处于朦朦胧胧、似有所悟的状况,缺乏应有的思考。学生对解决问题的策略的认识要经历一个从模糊到清晰的过程。教学时,教师可先呈现问题,让学生根据他们已有的知识经验尝试解决问题,获得一定的经验;再引导学生回顾解决问题的过程,
思考解决问题的策略,并通过回顾性陈述交流,将解决问题的策略化隐为显。在回顾性陈述时,学生可能会基于自己的经验和理解,提出不同的策略,教师应引导学生联系解决问题的过程提炼。
2.步入明朗化阶段
学生对某一种解决问题的策略有了初步的感受后,教师应引导学生将策略明朗化。如:呈现新问题后,组织学生思考可以用什么策略解决问题,使学生具有明确的应用策略的意识;解决问题后,再组织学生交流解决问题的过程。这样,随着解决问题策略的'初步应用以及对解决问题过程的回顾与反思,解决问题的策略就逐步浮出水面并凸现出来。这里要指出的是,在教学新的解决问题策略时,不能排斥学生应用以往学习的解决问题策略。学生学习解决问题策略的过程,不是小猴子掰玉米,喜新弃旧,而是在不断整合、应用不同策略的过程中,丰富自己解决问题的经验,并在新的问题中主
动、综合、灵活应用各种策略解决问题。
3.走向深刻化阶段
在学生比较充分地感知了解决问题的策略、明确了解决问题的策略后,教师要安排一定的练习,对相关策略进行集中强化,以加深学生对策略的理解与掌握,使学生对策略的认识更深刻,逐步达到运用自如的境界。在这一过程中,教师要引导学生继续反思自己所使用的策略,促进学生形成稳定的解决问题的策略。在教师的眼中,学生采用的策略可能有优劣之分,但学生的思考过程并没有好坏之别,都能反映学生对问题的理解和所作的努力。因此,即使到了巩固、深化策略的阶段,教师仍不应急于对学生的策略作出评价,而应给学生阐明和讨论策略的机会,让学生在交流、倾听中比较不同的策略,优化自我的策略。为了深化学生对策略的认识,教师可在学生采用一定的策略解决问题后引导学生进一步思考:自己所采用的解决问题的策略有什么特点,适用哪些情况?还可采用什么策略解决问题?不同策略之间有无一定的本质联系?学生不断地经历这样的思考,就能对策略的本质有更深入的认识,就能得心应手地应用策略解决问题。
策略,有助子在解决问题时走出无从下手的沼泽地;解决问题,有助于加深对策略的认识、理解与掌握。教师要充分认识策略的意义,进一步在实践中探索学生形成策略的规律,将解决问题策略的教学目标落到实处。
小学数学教案 篇6
教学目标
知识与技能:
1、学生通过观察,能够发现并总结商的变化规律。
2、会灵活运用商的变化规律。
3、培养学生用数学语言表达数学结论的能力
过程与方法:使学生经历引导学生思考发现商的变化规律的过程,灵活运用商的变化规律。
情感、态度和价值观:培养学生初步的抽象、概括能力及善于观察、勤于思考、勇于探索的良好习惯。
重点引导学生自己发现并总结商的变化规律。
难点引导学生自己发现并总结商的变化规律。
教具图片
教学过程
教师导学
一、故事导入
安排老猴子分桃子的故事
1、8个桃子分2天吃完,16个桃子分4天吃完,32个桃子分8天吃完,64个桃子分16天吃完。(将数字板书在黑板上)
2、提问:老猴子运用了什么知识教育了小猴子?今天我们一起来研究一下。
二、探究新知
1、提问:观察数字,你发现了什么?你怎么知道的`?
学生说方法,教师板书。
8÷2=4
16÷4=4
32÷8=4
64÷16=4
2、我们分别用第2、3、4式与第1个算式进行比较,你发现了什么?
被除数、除数分别都乘以一个相同的数。(扩大)
3、教师带领学生分别比较。
4、提问:谁能给我们总结一下,你发现了什么?
5、学生讨论,并发现:
在除法里,被除数、除数同时扩大相同的倍数,商不变。(教师板书)
6、提问:为什么说是“同时”,“相同”?可以举例子来证明
7、我们分别用第1、2、3式与第4个算式进行比较,你又发现了什么?
被除数、除数分别都除以一个相同的数。(缩小)
8、通过观察,谁能再给我们总结一下,你发现了什么?
在除法里,被除数、除数同时扩大(或缩小)相同的倍数,商不变。
板书课题:商的变化规律
三、总结:
提问:通过观察,我们发现了除法里有商的变化规律,那么谁能说说你觉得这个规律需要我们注意的有哪些?
你们看我这样写对吗?为什么?
48÷12=(48×0)÷(12×0)
让学生判断。
四、巩固练习:书P87“做一做”
五、总结
在运用商的变化规律时,一定要注意什么?(“同时”,“相同”。)
六、作业:练习十七第6题、9题。
小学数学教案 篇7
教学目标:
1、让学生初步经历列方程解决一步计算的实际问题的学习过程,掌握列方程解决实际问题的一般步骤货物方法,会列方程解决一些简单的实际问题。
2、让学生在学习活动中初步感受方程,丰富解题策略,发展数学思考,培养分析问题、解决问题的能力。
3、让学生进一步感受数学在解决现实问题中的作用,体验用新的策略解决生活中数学问题的快乐,增强学习数学的信心。
教学过程:
一、导入:
我们已经认识了方程,学会解只含有加、减法和乘、除法一步计算的`过程。在实际生活中,用列方程、解方程的方法也能把一些分析数量关系比较困难的问题,很容易解决。这节课我们就学习列方程解决简单的实际问题。(板书课题)
二、新课:
1、教学例题
(1)出示例题。
师:列方程解决实际问题和我们过去解决实际问题一样,首先要审题。(板书:审题)
题中告诉我们哪些已知信息?要我们解决什么问题?
(2)过去我们解决实际问题时,审题后要分析数量关系,列方程解决实际问题也要分析数量关系,所不同的是,现在我们要找一个数量关系式。(板书:找等量关系式)
(3)过去我们解决问题时是想怎样从已知的推算出未知的,现在我们可以把未知的数设为X。(板书:设未知数)可以这样写:先写“解”字,表示解题的过程,而设小军的跳高成绩为X米这句话必须写下来,否则,人家就不知道你下面列出的方程是什么意思。
(4)谁能根据我们找到的等量关系式列出方程?(板书:列方程)
(5)下面我们用解方程的方法就可以找到问题的答案了。(板书:解方程)
请学生上黑板板书。
强调:因为在设的前面已经写上了“解”字,所以在接方程时不再需要写“解”字了。
(6)、因为这里是解决实际问题,在求出答案后,还应该像过去解决实际问题一样写上答句。(板书:写答句)
(7)、在问题解决后要检验答案是否正确、合理。突出两点:第一是看方程列的是否合理,第二是看解方程是否正确。(板书:检验)
2、练一练:第一题
3、找出题中的等量关系式。
(1)、小明打一1200个字的文章,已经打了一些,还剩下280个字没打。小明打了多少个字?
(2)、学校为扩充图书资料,今年计划投入 资金1.2万元,是去年的1.6倍。去年投入资金多少万元?
(3)、一个正方形的周长是27.2厘米,这个正方形的边长是多少厘米?
4、试一试:
蓝鲸是世界上最大的动物。一头蓝鲸重165吨,大约是一头非洲象的33倍。这头非洲象大约重多少吨?(列方程解答)
5、练一练:第二题
三、全课:
1、 列方程解决实际问题的步骤是什么?解题的关键是什么?
2、 通过这节课的学习你还有那些收获?还有什么问题?
小学数学教案 篇8
【教学内容】
比和比例(1)。
【教学目标】
1.使学生进一步理解比和比例的含义及性质,会化简比和求比值,会解比例。
2.经历比和比例的复习,体验对比、归纳的学习方法,培养学生归纳整理、灵活运用知识的能力。
【重点难点】
理解比和比例、求比值及化简比等知识。
【教学准备】
多媒体课件。
【复习导入】
教师:我们已经学习了比和比例,你知道比和比例的哪些知识?
学生逐一说出一些知识后,教师揭示课题。
【归纳整理】
1.复习比和比例的意义和性质
出示表格,通过提问进行填空。
引导提问:
什么叫做比?举例说明。各部分名称是什么?
什么叫做比的.基本性质?举例说明。
什么叫做比例?举例说明。各部分名称是什么?
什么叫做比例的基本性质?举例说明。
(1)组织学生议一议,并相互交流。
(2)指名学生汇报,汇报时注意举例说明,并进行集体评议。
(3)学生汇报后,教师板书表格。
比例的基本性质有什么用处?
指名学生回答。
练习:解比例:
一人板演,其余做在草稿本上。
2.复习比、分数、除法的关系。
提问:比和分数有什么关系?
比和除法有什么关系?
出示表格:
比、分数与除法的关系:
组织学生认真填写表格,并议一议,相互交流。
用投影仪汇报学生的完成情况,并进行集体评议。
教师根据学生的交流板书:
教师举例:5∶6==()÷()
由一名学生板演,其他做在练习本上。
3.复习求比值和化简比。
出示习题:化简下面各比并求比值。
请四名学生板演:其余学生做在练习本上。
做完后集体订正,请同学们说一说求比值与化简比的方法。
出示表格。
化简比与求比值的不同之处
(1)组织学生独立思考,认真填写表格。
(2)学生互相议一议,互相交流。
(3)指名说一说,并进行集体评议。
教师板书:
4.复习比例尺。
(1)什么叫做比例尺?
指名回答后,教师板书:=比例尺
(2)说出下面各比例尺的具体意义。
①比例尺1:3000000表示
②比例尺20:1表示
③比例尺表示
组织学生先想一想,同桌相互交流。
教师指名说。(多点一些基础较差的人说)
(3)巩固练习。
①求比例尺。
一条绿化带长350m,在平面图上用7cm的线段表示。这幅图纸的比例尺是多少?
②求实际距离。
在比例尺是的地图上,量得A地到B地的距离是5cm。求AB两地的实际距离。
学生独立作业后再集体订正。
答案:①1∶5000②400km。
【课堂作业】
教材85页练习十七第1题。
学生独立作业,然后再集体订正。
【课堂小结】
通过这节课的学习,你对比和比例有了更深刻的认识了吧。你学到了哪些知识,同桌之间相互说一说。
【课后作业】
完成练习册中本课时的练习。
小学数学教案 篇9
教师出示人教版九年义务教育六年制第十册16页的例1:服装小组用21.45米布做了15件衬衫,平均每件用布多少米?
师:怎么列式?
生1:21.45÷15。
师:我们会计算2145÷15,那么21.45÷15怎么算出它的结果呢?先独立思考,试做一下,然后在小组内讨论吧!
教师巡视,参与小组讨论。
师:哪个小组派个代表来向全班同学汇报:
组1:我们组是把21.45米化成2145厘米,算式就改写成2145÷15,变成了整数除法,结果是143厘米,再把143厘米化成1.43米。
师:有道理!还有不同的做法吗?
组2:我们小组认为,因为2145÷15=143,现在被除数是21.45,也就是缩小了100倍,而除数不变,那么商也缩小了100倍,所以商也应缩小100倍,正确的结果是1.43。
组3:我们小组是列竖式计算出来的。接着把做的竖式放在展示台上展示。
师:各小组都想出了办法,把21.45÷15的结果算出来了。现在老师要提一个问题:哪个小组想的办法更好?今后都能使用。小组继续讨论。
组4:组3想的办法更好,没有局限性,碰到类似的算式都可以用这样的竖式计算。
师:大家同意吗?
(学生齐答:同意。)
师:好,那么大家一起来观察这个竖式。哪位同学要提出什么问题?
生2:商的小数点是怎么来的?
生3:商的小数点是和被除数的小数点对齐。
生2:商的小数点为什么要和被除数的小数点对齐?
师:谁能解决这个问题?
生4:因为商的最高位在个位上,而小数点应该在个位的后面,所以小数点要和被除数的小数点对齐。
生5:如果商的小数点不和被除数的小数点对齐,商就不是1.43,商不是1.43,那么验算的话,商和除数相乘就得不到被除数。
生6:除到被除数的`个位时还余下6,这时要跟被除数十分位上的4合起来一起除以15,合起来的数是64个十分之一,所以得到的商是4个十分之一,那么4应该写在十分位上,商的小数点自然就要和被除数的小数点对齐。
师:说的太精彩了!(学生自发地给以掌声鼓励)
师:现在请同学用自己的话向同桌说说除数是整数的小数除法的方法。
……
反思:
1、自主探究,小组讨论。教师出示例题后,就让学生独立思考,再在小组内讨论,找到解决的方法,这种把学习的主动权交还给学生,让学生自己去经历探究的过程,有利于方法的掌握和法则的总结。在小组内每个学生能充分发表自己的意见,能听取到别人的意见得到一些启发,也能给别人以提示,最后能在小组内达成一致意见。
2、小组汇报,增加见识。因为在一个小组里形成了一种意见的定势,而通过小组汇报,班级里就会出现不同的见解、思路和方法。这样,让同学大开了眼界,知道解决一个相同的问题,有不同的方案。最后还让学生讨论哪种方案更具代表性和科学性。这样,学生思维的发散性和开阔性不仅得到了培养,而且,学生对“最优化”的意识进一步得到了提高和巩固。
3、问题从学生中来,到学生中去。提出一个问题往往比解决一个问题更重要,学贵与疑。当学生提出问题后,教师不急于回答,马上把问题抛给学生,这样,大胆、充分地相信学生的智慧和能力,给学生以极大的信心。结果,学生果不负教师的期望,一一做了回答。并说得十分精彩。
4、教师是红娘,不是第三者。令人欣喜的是,在这个片段里能听到学生的追问。并且,其他学生,不等教师开口就情不自禁地回答起来。这样的情景是老师最喜欢看到的。出现这样的情景与教师的角色定位是分不开的。
5、变替蝶破茧,为咬茧自出。有意义的学习并非简单的被动接受过程,而是学生主动建构的过程,自主探索是新课程倡导的学生学习数学的重要方式之一,学生总是在自主探索的学习活动中获得亲身的体验,可以说,学生参与自主探索的学习活动越主动充分,所获得的体验就越深刻、丰富,这样,为学生今后的学习和发展就提供了“动力源”,真正实现了“教是为了不教”。
总之,整个片段教学下来,学生的思维得到了发展,能力得到提高,学生的情绪很饱满,参与的积极性很高。但也感觉到有遗憾的地方,致使有的学生还是坚持自己的观点。比如:教师没有进一步引导、讲解和举例,让学生充分认识到“组1:我们组是把21.45米化成2145厘米,结果算式就写成了2145÷15,结果是143厘米,再把143厘米化成1.43米。”这个方案的不足;当组2说出:我们小组认为,因为2145÷15=143,现在被除数是21.45,也就是缩小了100倍,而除数不变,那么商也缩小了100倍,所以商应缩小100倍,得到1.43。”这个方案时,没有让组2的同学充分说出这样做的道理或理由。其实,这个方案就是把被除数看作整数,根据整数除以整数的方法算出商,然后再根据被除数缩小多少倍,除数不变,商也缩小多少倍的规律得到商是1.43。实际上也就是要在商143里点上小数点,追问学生商的小数点该点在哪?这样做了话的话就能和组3同学的方案整合到一起了。可惜,当时老师没有按上面的做法去做。
小学数学教案 篇10
教学目标
1.能根据情境提出数学问题,并选择适当的算法。
2.培养估算意识,能结合具体情况进行估算,判断计算结果的对错,并对结果的合理性做出解释。
3.结合具体情境,培养提出问题,解决问题的能力。
教学重点
能结合具体情况进行估算,判断计算结果的对错,并对结果的合理性作出解释。
教学难点
估算方法的合理运用。
教学准备
课件、练习三。
教学方法
引导学习法、练习法。
教学过程
一、复习铺垫,情境引入
小明家到学校有504米,约是( )米。 我校二年级有288人,约是( )人。养鸡场昨天收蛋192个,约是( )个。 电风扇售价235元,约是( )元。
2.师:下面我们一起看看二(3)班这个月收集牛奶纸盒情况。出示统计表:
收集牛奶纸盒情况
第一周 195个
第二周 328个
第三周 217个
第四周 286个
二、合作交流,探究新知
收集信息,提出问题。
师:小朋友,从这张统计表中你能获得哪些信息?
出示:这个月大约一共收集了几个牛奶纸盒?
2.列式:195+328+217+286=
独立进行估算,然后四人小组讨论交流各自的估算方法。
3.汇报讨论结果。
(1)老师板书学生的估算过程。
(2)老师肯定学生合理的估算方法,并引导学生观察分析、掌握一般的估算方法,提出:在估算时可以把数看成接近的`整十或整百的数。
4.师:那么二年级6个班级一个月大约能收集多少个?
那么全校6个年级一个月大约能收集多少个?
全校学生在一个月里能收集这么多的牛奶纸盒,你有什么想法呢?
5.书上P98例5。
(1)第三、四周大约一共收集了多少个?汇报时说说估算过程。
(2)如果每收集500个送一次,那么大约再收集几个,又可以送一次了?学生集体交流。
(3)你还能提出什么数学问题?
预计:第一周和第二周大约收集了几个?
二(1)班一个月大约一共收集多少个?
三、巩固练习
1.做一做:生独立完成,再集体交流,说出估算的过程和想法。
2.练习二十第5题。
3.练习二十第6、7、8题:先让学生独立思考完成,汇报答案,并交流思考方法:你是怎样进行估算的?
四、小结
布置作业《练习3》
练习三
1、计算下面各题,并验算.
285+356= 326-243 =
683-415 = 495+474 =
2、估算:
480-196 ≈ 185+379 ≈
607-494 ≈ 526-389 ≈
1890+890 ≈ 503-315 ≈
683-415 ≈ 495 +474 ≈
285 +306 ≈ 616-293 ≈
285+89+816 ≈ 1503-488-305≈
【小学数学教案】相关文章:
小学数学教案05-16
实用的小学数学教案08-12
小学数学教案(必备)08-24
小学数学教案模板11-25
平行小学数学教案04-10
小学数学教案(实用)07-27
小学数学教案4篇09-30
小学数学教案3篇04-02
精选小学数学教案三篇09-10
【精华】小学数学教案三篇10-15